
The Self-Taught Programmer

Cory Althoff

Copyright © 2017 by Cory Althoff.

All rights reserved. This book or any portion thereof may not be reproduced or used in any
manner whatsoever without the express written permission of the publisher except for the
use of brief quotations in a book review.

ISBN 978-0-9996859-0-7
1st Edition
Published by Triangle Connection LLC
http://theselftaughtprogrammer.io

Illustrations by Blake Bowers.
Edited by James Althoff, Steve Bush, Lawrence Sanfilippo, Madeline Luce and Pam
Walatka.

I dedicate this book to my parents, Abby and James Althoff, for always supporting me.

I

Table of Contents

Part I Introduction to Programming

Chapter 1. Introduction ...1
How This Book Is Structured 						 1
Endgame First 	 2
You Are Not Alone 	 3
The Self-Taught Advantage 	 3
Why You Should Program 	 3
Sticking with It 	 4
How This Book Is Formatted 	 4
Technologies Used in This Book 	 5
Vocabulary 	 5
Challenge 	 6

Chapter 2. Getting Started ...7
What Is Programming 	 7
What Is Python 	 8
Installing Python 	 8
Troubleshooting 	 8
The Interactive Shell	 8
Saving Programs 	 10
Running Example Programs	 11
Vocabulary 	 11
Challenge 	 11

II

Chapter 3. Introduction to Programming13

Examples 	 13
Comments 	 14
Printing 	 15
Lines 	 16
Keywords 	 17
Spacing 	 17
Data Types 	 18
Constants and Variables	 20
Syntax 	 24
Errors and Exceptions	 25
Arithmetic Operators 	 26
Comparison Operators 	 29
Logical Operators 	 32
Conditional Statements	 35
Statements 	 40
Vocabulary 	 43
Challenges 	 44

Chapter 4. Functions ..47

Representing Concepts 	 47
Functions 	 47
Defining Functions	 48
Built-In Functions 	 51
Reusing Functions 	 54
Required and Optional Parameters 	 56
Scope 	 57
Exception Handling 	 61
Docstrings 	 64
Only Use a Variable When Needed 	 65
Vocabulary 	 65
Challenges 	 66

III

Chapter 5. Containers ..67

Methods	 67
Lists 	 67
Tuples 	 73
Dictionaries 	 76
Containers in Containers	 80
Vocabulary 	 85
Challenges 	 85

Chapter 6. String Manipulation ..87

Triple Strings 	 87
Indexes 	 87
Strings are Immutable	 89
Concatenation 	 89
String Multiplication 	 90
Change Case 	 90
Format 	 91
Split 	 92
Join 		 93
Strip Space	 	 94
Replace 		 94
Find an Index 	 94
In 	 96
Escaping Strings	 96
Newline 	 98
Slicing 	 98
Vocabulary 	 100
Challenges 	 100

IV

Chapter 7. Loops ..103

For-Loops 	 103
Range 	 107
While-Loops 	 108
Break 	 109
Continue 	 111
Nested Loops 	 112
Vocabulary 	 114
Challenges 	 114

Chapter 8. Modules ..117

Importing Built-In Modules 	 117
Importing Other Modules 	 119
Vocabulary 	 121
Challenges 	 121

Chapter 9. Files ..123

Writing to Files 	 123
Automatically Closing Files	 124
Reading from Files 	 125
CSV Files 	 126
Vocabulary 	 128
Challenges 	 129

Chapter 10. Bringing It All Together131

Hangman 	 132
Challenge 	 136

V

Chapter 11. Practice ...137

Read 	 137
Other Resources 	 137
Getting Help 	 137

Part II Introduction to Object-Oriented
Programming

Chapter 12. Programming Paradigms139

State 	 139
Procedural Programming	 139
Functional Programming 	 141
Object-Oriented Programming 	 142
Vocabulary 	 149
Challenges 	 149

Chapter 13.
The Four Pillars of Object-Oriented Programming151

Encapsulation 	 151
Abstraction 	 154
Polymorphism 	 154
Inheritance 	 156
Composition 	 160
Vocabulary 		 162
Challenges 		 162

VI

Chapter 14. More Object-Oriented Programming163

Class Variables vs. Instance Variables 	 163
Magic Methods 	 166
Is 	 168
Vocabulary	 169
Challenges 	 169

Chapter 15. Bringing It All Together171

Cards 	 171
Deck 	 173
Player 	 175
Game 	 175
War 	 177

VII

Part III Introduction to Programming Tools

Chapter 16. Bash ..183

Following Along	 183
Finding Bash	 184
Commands	 184
Recent Commands	 185
Relative vs. Absolute Paths	 185
Navigating	 187
Flags	 189
Hidden Files	 190
pipes	 190
Environmental Variables	 190
Users	 191
Learn More	 192
Vocabulary	 192
Challenges	 193

Chapter 17. Regular Expressions195

Setup	 195
A Simple Match	 196
Match Beginning and End		 199
Match Multiple Characters	 200
Match Digits	 201
Repetition	 202
Escaping	 205
Regular Expression Tool	 206
Vocabulary	 206
Challenges	 206

VIII

Chapter 18. Package Managers209

Packages	 209
Pip	 209
Virtual Environments	 212
Vocabulary	 212
Challenge	 212

Chapter 19. Version Control ...213

Repositories	 213
Getting Started	 214
Pushing and Pulling	 216
Pushing Example	 217
Pulling Example	 220
Reverting Versions	 221
diff	 222
Next Steps	 223
Vocabulary	 223
Challenges	 224

Chapter 20. Bringing It All Together225

HTML	 225
Scrape Google News	 226
Vocabulary	 230
Challenge	 230

IX

Part IV Introduction to Computer Science

Chapter 21. Data Structures ..233

Data Structures	 233
Stacks	 233
Reversing a String with a Stack	 236
Queues	 237
Ticket Queue	 240
Vocabulary	 242
Challenges	 242

Chapter 22. Algorithms ...243

FizzBuzz	 243
Sequential Search	 244
Palindrome	 245
Anagram	 246
Count Character Occurrences	 247
Recursion	 248
Vocabulary	 251
Challenge	 251

X

Part V Landing a Job

Chapter 23. Best Programming Practices253

Write Code as a Last Resort	 253
DRY	 253
Orthogonality	 253
Every Piece of Data Should Have One Representation	 254
Functions Should Do One Thing	 254
If It’s Taking Too Long, You Are Probably Making a Mistake	 254
Do Things the Best Way the First Time	 254
Follow Conventions	 255
Use a Powerful IDE	 255
Logging	 256
Testing	 256
Code Reviews	 257
Security	 257
Vocabulary	 258

Chapter 24. Your First Programming Job259

Choose a Path	 259
Getting Initial Experience	 260
Getting an Interview	 260
The Interview 	 260
Hacking the Interview	 261

XI

Chapter 25. Working on a Team263

Master the Basics	 263
Don’t Ask What You Can Google	 263
Changing Code	 263
Imposter Syndrome	 264

Chapter 26. Further Learning ...265

The Classics	 265
Online Classes	 265
Hacker News	 265

Chapter 27. Next Steps ...267

Find a Mentor	 267
Strive to Go Deep	 267
Other Advice	 268
Acknowledgements		 269
Citations	 271
Index	 273

XII

Part I
Introduction to Programming

1

Chapter 1. Introduction
"Most good programmers do programming not because they expect to get paid or get
adulation by the public, but because it is fun to program."
—Linus Torvalds

I majored in political science at Clemson University. I considered computer science,
and even enrolled in an Introduction to Programming class my freshman year, but
quickly dropped it. It was too difficult. While living in Silicon Valley after graduation,
I decided I needed to learn to program. A year later, I was working as a software
engineer II at eBay (above an entry-level software engineer, but below a senior software
engineer). I don’t want to give the impression that this was easy. It was incredibly
challenging. In between throwing things at the wall, I had a lot of fun.

I started my journey learning to program in Python, a popular programming
language. This book, however, is not just about teaching you how to program in a
particular language—although it does. It’s about everything else the standard resources
do not teach you. It’s about the things I had to learn on my own to become a
software engineer. This book is not for someone looking for a casual introduction to
programming so they can write code as a hobby. This book is written specifically for
those looking to program professionally. Whether your goal is to become a software
engineer, an entrepreneur, or to use your new programming skills in another profession,
I wrote this book for you.

Learning a programming language is only part of the battle. There are other skills you
need in order to speak the language of computer scientists. I will teach you everything
I learned on my journey from programming novice to professional software engineer. I
wrote this book to give aspiring programmers an outline of what they need to know.
As a self-taught programmer, I didn’t know what I needed to learn. The introductions
to programming books are all the same. They teach you the basics of how to program
in either Python or Ruby, and send you on your way. The feedback I’ve heard from
people finishing these books is "What do I do now? I am not a programmer yet, and
I don’t know what to learn next." This book is my answer to that question.

How This Book Is Structured
Many of the subjects covered in a single chapter of this book could be—and are—covered
by entire books. My goal is not to cover every detail of every subject you need to know. My
goal is to give you a map—an outline of all of the skills you need to develop to program
professionally. This book is divided into five parts:

2 Part I Introduction to Programming

Part I: Introduction to Programming. You will write your first program as quickly as
possible, hopefully today.

Part II: Introduction to Object-Oriented Programming. I cover the different programming
paradigms—focusing on object-oriented programming. You will build a game that
shows you the power of programming. You will be hooked on programming after this
section.

Part III: Introduction to Programming Tools. You learn to use different tools to take
your programming productivity to the next level. At this point, you are hooked on
programming and want to get even better. You will learn more about your operating
system, how to use regular expressions to boost your productivity, how to install and
manage other people’s programs, and how to collaborate with other engineers using
version control.

Part IV: Introduction to Computer Science. This section is a light introduction to
computer science. I cover two important topics: algorithms and data structures.

Part V: Landing a Job. The final section is about best programming practices, getting
a job as a software engineer, working on a team, and improving as a programmer.
I provide tips on how to pass a technical interview and work on a team, as well as
advice on how to further enhance your skills.

If you don’t have any programming experience, you should practice programming on
your own as much as possible between each section. Don’t try to read this book too
quickly. Use it as a guide and practice for as long as you need in between sections.

Endgame First
The way I learned to program is the opposite of how computer science is usually
taught, and I structured the book to follow my approach. Traditionally, you spend a
lot of time learning theory—so much so, that many computer science graduates come
out of school not knowing how to program. In his blog "Why Can’t Programmers..
Program?," Jeff Atwood writes, "Like me, the author is having trouble with the fact
that 199 out of 200 applicants for every programming job can’t write code at all. I
repeat: they can’t write any code whatsoever." This revelation led Atwood to create
the FizzBuzz coding challenge, a programming test used in interviews to weed out
candidates. Most people fail the challenge, and that’s why you spend so much of this
book learning the skills you will use in practice. Don’t worry, you also learn how to
pass the FizzBuzz test.

3Chapter 1. Introduction

In The Art of Learning, Josh Waitzkin of Searching for Bobby Fischer fame describes how
he learned how to play chess in reverse. Instead of studying opening moves, he started
learning the endgame (when there are only a few pieces left on the board) first. This
strategy gave him a better understanding of the game, and he went on to win many
championships. Similarly, I think it is more efficient to learn to program first, then
learn theory later, once you are dying to know how everything works. That is why I
wait until Part IV of the book to introduce computer science theory, and I keep it
to a minimum. While theory is important, it will be even more valuable once you
already have programming experience.

You Are Not Alone
Learning how to program outside of school is increasingly common. A 2015 Stack
Overflow (an online community of programmers) survey found 48 percent of respondents
did not have a degree in computer science.1

The Self-Taught Advantage
When eBay hired me, I was on a team that included programmers with computer
science degrees from Stanford, Cal, and Duke, as well as two physics Ph.D’s. At
25, it was intimidating that my 21-year-old teammates knew 10 times more about
programming and computer science than I did.

As intimidating as it is to work with people who have bachelor’s, master’s and
Ph.Ds in computer science, never forget you have what I like to call the "self-taught
advantage." You are not reading this book because a teacher assigned it to you, you
are reading it because you have a desire to learn, and wanting to learn is the biggest
advantage you can have. Also, don’t forget that some of the most successful people
in the world are self-taught programmers. Steve Wozniak, the founder of Apple, is a
self-taught programmer. So is Margaret Hamilton, who received the Presidential Medal
of Freedom for her work on NASA’s Apollo Moon missions; David Karp, founder of
Tumblr; Jack Dorsey, founder of Twitter; and Kevin Systrom, founder of Instagram.

Why You Should Program
Programming can help your career regardless of your profession. Learning to program
is empowering. I love coming up with new ideas, and I always have a new project
I want to start. Once I learned to program, I could sit down and build my ideas
without needing to find someone to do it for me.

4 Part I Introduction to Programming

Programming will also make you better at everything else you do. There aren’t many
subjects that don’t benefit from finely tuned problem-solving skills. Recently, I had the
very tedious task of searching for housing on Craigslist. I was able to write a program
to do the work for me and email me the results. Learning to program will free you
from repetitive tasks forever.

If you want to become a software engineer, there is an increasing demand and not
enough qualified people to fill the available positions. By 2020, an estimated 1 million
programming jobs will go unfilled.2 Even if your goal isn’t to become a software
engineer, jobs in fields like science and finance are beginning to favor candidates with
programming experience.

Sticking with It
If you don’t have any programming experience and are nervous about making
this journey, I want you to know you are capable of it. There are some common
misconceptions about programmers like they all are great at math. They aren’t. You
don’t need to be great at math to learn to program, but it does take hard work. With
that said, a lot of the material covered in this book is easier to learn than you think.

To improve your programming skills, you should practice programming every day. The
only thing that will hold you back is not sticking with it, so let’s go over two ways
to make sure you do.

When I was getting started, I used a checklist to ensure I practiced every day,
and it helped me stay focused. You can also sign up for my online programming course,
which comes with access to my private Facebook community, at goselftaught.com.

If you need extra help, Tim Ferriss, a productivity expert, recommends the
following technique to stay motivated: give money to a friend or family member
with instructions to return it to you upon completion of your goal within a given
time frame, or donate it to an organization you dislike if you fail.

How This Book Is Formatted
The chapters in this book build on one another. I try to avoid re-explaining
concepts, so keep this in mind. Important terms appear in bold when I first
introduce them. There is a vocabulary section at the end of each chapter where
each bold word is defined. There are also challenges at the end of each chapter to
help you develop your programming skills, as well as links to the solutions.

5Chapter 1. Introduction

Technologies Used in This Book
This book teaches certain technologies to give you as much practical programming
experience as possible. I try to be technology agnostic, focusing on concepts instead
of technologies.

In some cases, I had to choose between many different technologies. In Chapter 20:
"Version Control" (for those readers who are unfamiliar with version control, I will
explain later), I go over the basics of using Git, a popular version control system. I
chose Git because I consider it the industry standard for version control. I use Python
for the majority of the programming examples, because it is a popular programming
language to learn, and it is a very easy language to read, even if you have never
used it. There is also a huge demand for Python developers in just about every field.

To follow the examples in this book, you will need a computer. Your computer has
an operating system—a program that is the middleman between the physical
components of the computer and you. What you see when you look at your computer
screen is called a graphical user interface or GUI, which is part of your operating
system.

There are three popular operating systems for desktop and laptop computers:
Windows, Unix, and Linux. Windows is Microsoft’s operating system. Unix is an
operating system created in the 1970s. Apple’s current operating system is based on
Unix. From here on out, when I refer to Unix, I am referring to Apple’s desktop
operating system. Linux is an open-source operating system used by the majority
of the world’s servers. A server is a computer or computer program that performs
tasks, like hosting a website. Open-source means a company or individual does not
own the software and it may be redistributed and modified. Linux and Unix are both
Unix-like operating systems, which means they are very similar. This book
assumes you are using a computer running Windows, Unix, or Ubuntu (a popular
version of Linux) as your operating system.

Vocabulary
FizzBuzz: A programming test used in interviews to weed out candidates.
Operating system: A program that is the middleman between the physical components
of the computer and you.
Graphical user interface (GUI): The part of your operating system you see when
you look at your computer screen.
Windows: Microsoft’s operating system.

6

Unix: An operating system created in the 1970s. Apple’s operating system is based
on Unix.
Linux: An open-source operating system used by the majority of the world’s servers.
Open-source: Software that is not owned by a company or individual, but is instead
maintained by a group of volunteers.
Server: A computer or computer program that performs tasks, like hosting a website.
Unix-like operating systems: Unix and Linux.

Challenge
1. Create a daily checklist that includes practicing programming.

7

Chapter 2. Getting Started
"A good programmer is someone who always looks both ways before crossing a one-way
street."
—Doug Linder

What Is Programming
Programming is writing instructions for a computer to execute. The instructions might
tell the computer to print Hello, World!, scrape data from the Internet, or read the
contents of a file and save them to a database. These instructions are called code. Programmers
write code in many different programming languages. In the past, programming was much
harder, as programmers were forced to use cryptic, low-level programming languages
like assembly language. When a programming language is low-level, it is closer to being
written in binary (0s and 1s) than a high-level programming language (a programming
language that reads more like English), and thus is harder to understand. Here is a simple
program written in an assembly language:

http://tinyurl.com/z6facmk

global _start
 section .text
_start:
 mov rax, 1
 mov rdi, 1
 mov rsi, message
 mov rdx, 13
 syscall
 ; exit(0)
 mov eax, 60
 xor rdi, rdi
 syscall
message:
 db "Hello, World!", 10

Here is the same program written in a modern programming language:

1
2
3
4

http://tinyurl.com/zhj8ap6

print("Hello, World!")

As you can see, programmers today have it much easier. You won’t need to spend time

8 Part I Introduction to Programming

learning cryptic, low-level programming languages to program. Instead, you will learn an
easy-to-read programming language called Python.

What Is Python
Python is an open-source programming language created by Dutch programmer Guido
van Rossum, named after the British sketch comedy group Monty Python. One of van
Rossum’s key insights was that programmers spend more time reading code than writing
it, so he created an easy-to-read language. Python is one of the most popular and easiest to
learn programming languages in the world. It runs on all the major operating systems and
computers and is used to build web servers, create desktop applications, and everything in
between. Because of its popularity, there is a significant demand for Python programmers.

Installing Python
To follow the examples in this book, you need to have Python Version 3 installed. You can
download Python for Windows and Unix at http://python.org/downloads. If you are on
Ubuntu, Python 3 comes installed by default. Make sure you download Python 3,
not Python 2. Some of the examples in this book will not work if you are using
Python 2.

Python is available for 32-bit and 64-bit computers. If you purchased your computer after
2007, it is most likely a 64-bit computer. If you aren’t sure, an Internet search should help
you figure it out.

If you are on Windows or a Mac, download the 32- or 64-bit version of Python, open
the file, and follow the instructions. You can also visit http://theselftaughtprogrammer.
io/installpython for videos explaining how to install Python on each operating system.

Troubleshooting
From this point forward, you need to have Python installed. If you are having problems
installing Python, please skip ahead to Chapter 11 to the section titled "Getting Help."

The Interactive Shell
Python comes with a program called IDLE, short for interactive development environment
(also the last name of Eric Idle, one of the members of Monty Python’s Flying Circus). IDLE
is where you will be typing your Python code. Once you’ve downloaded Python, search for
IDLE in Explorer (PC), Finder (Mac), or Nautilus (Ubuntu). I recommend creating a desktop
shortcut to make it easy to find.

9Chapter 2. Getting Started

Click on the IDLE icon, and a program with the following lines will open (although this could
change, so don’t worry if the message is absent or different):

Python 3.5.1 (v3.5.1:37a07cee5969, Dec 5 2015, 21:12:44) [GCC 4.2.1 (Apple Inc. build
5666) (dot 3)] on darwin Type "copyright", "credits" or "license()" for more information. >>>

This program is called the interactive shell. You can type Python code directly into the
interactive shell, and it will print the results. At the prompt >>> type:

1 print("Hello, World!")

Then press enter.

IDLE might reject code copied from Kindle, other eBooks, or word processors like Microsoft
Word. If you copy and paste code and get an unexplainable error message, try typing the code
directly into the shell. You must type the code exactly as written in the example, including
quotation marks, parentheses, and any other punctuation.

The interactive shell will respond by printing Hello, World!

10 Part I Introduction to Programming

In the programming world, it is a tradition when you teach someone a new programming
language that the first program you teach them is how to print Hello, World! So,
congratulations! You just wrote your first program.

Saving Programs
The interactive shell is useful for quick computations, testing small bits of code and writing
short programs you don’t plan on using again. You can also use IDLE to save a program for
reuse. Start the IDLE application, click "File" (in the menu bar on the top left of the IDLE
editor), then select "New File." Selecting this option will open up a text editor, which usually
has a blank white background. You can write code in this text editor and save it to run later.
When you run your code, the output will appear in the interactive shell. You need to save
changes while editing code before running it again. Type the Hello, World! program into the
text editor:

Go to "File" again and select "Save As." Name your file "hello_world.py" and save it. Python
file names have to end with .py. Once you’ve saved your file, click "Run" (in the menu bar
in the top left corner of the IDLE editor), and select "Run Module." Alternatively, you
can press the F5 key command, the equivalent of selecting "Run Module" from the menu
bar. Hello, World! will print in the interactive shell, as if you had typed this line of
code. But now, since you saved your program, you can run it as many times as you like.

The program you created is simply a file with a .py extension, located on your computer
wherever you saved it. The name I chose for the file—"hello_world.py"—is completely

11Chapter 2. Getting Started

arbitrary, you can name the file anything. Like this example, writing programs in Python
simply involves typing text into files and running them using the interactive shell. Easy, right?

Running Example Programs
Throughout the book, I give examples of code and the results that print when you run them.
Whenever I do this, you should enter the code and run it yourself.

Short examples are best run using the shell, and the text editor is better for longer programs
you want to save and edit. If you make a mistake in your code in the interactive shell a typo
for example—and the code doesn’t work, you have to type everything over again. Using the
text editor lets you save your work, so if you make a mistake, you simply fix it and rerun the
program.

Another reason the distinction is important is the output of a program running from a file
versus the shell can be slightly different. If you type 100 into the interactive shell and press
enter, the interactive shell will output 100. If you type 100 into a .py file and run it, there will
be no output. This difference can cause confusion, so be mindful of where you are running a
program from if you do not get the same output as the example.

Vocabulary
Programming: Writing instructions for a computer to execute.
Code: The instructions programmers write for a computer to execute.
Low-level programming language: A programming language closer to being written in
binary (0s and 1s) than a high-level programming language.
Assembly language: A type of difficult-to-read programming language.
High-level programming language: A programming language that reads more like
English than a low-level programming language.
Python: The easy-to-read, open-source programming language you will learn to use in this
book. Created by Guido van Rossum and named after the British sketch comedy group
Monty Python.

Challenge
1. Try to print something other than Hello, World!.

Solution: http://tinyurl.com/noeujfu.

12

13

Chapter 3. Introduction to
Programming
"It's the only job I can think of where I get to be both an engineer and an artist. There's an
incredible, rigorous, technical element to it, which I like because you have to do very precise
thinking. On the other hand, it has a wildly creative side where the boundaries of imagination
are the only real limitation."
—Andy Hertzfeld

Our irst program printed Hello, World! Let's print it a hundred times. Type the following
code into the interactive shell (print needs to be indented exactly four spaces):

1
2
3
4
5

http://tinyurl.com/h79ob7s

for i in range(100):
 print("Hello, World!")

Your shell should print Hello, World! a hundred times. Even though you will probably
never need to print Hello, World! a hundred times, this example shows you how powerful
programming is. Can you think of anything else you can do a hundred times so easily? I can't.
That is the power of programming.

Examples
From now on, code examples will look like this:

1
2
3
4
5

http://tinyurl.com/h4qntgk

for i in range(100):
 print("Hello, World!")

>> Hello, World!
>> Hello, World!
>> Hello, World!
…

14 Part I Introduction to Programming

The text # http://tinyurl.com/h4qntgk contains a URL that takes you to a web page that
contains the code from it, so you can easily copy and paste it into the IDLE text editor if you
are having problems getting the code to run. The text that comes after >> is the output of
the interactive shell. Throughout the book, you will see >> after each programming example,
which represents the output of the program (printed in the interactive shell). Ellipses (...)
mean "and so on."

If there is no >> after an example, it means either the program doesn't produce an output,
or I am explaining a concept and the output is not important.

Anything written in Courier New font is some form of code, code output or programming
jargon. For example, if I refer to the word for in the previous example, it will be written in
the Courier New font.

Courier New is a fix-width (non-proportional) font often used to display programming text.
Each character has the same width, so indentation and other display characteristics of code
alignment are easier to observe.

You can run examples from either the shell or a .py file. Be aware that, as I mentioned
earlier, the output from the shell is slightly different so if you are not getting the same output,
that is why. If an example prints an output but doesn't have the word print in it, you should
enter the code into the shell. If the word print is in an example, you should run the code
from a .py file.

Comments
A comment is a line (or part of a line) of code written in English (or another language),
preceded by a symbol telling the programming language you are using to ignore that line (or
part of a line) of code. In Python, the pound symbol is used to create comments.

A comment explains what a line of code does. Programmers use comments to make the line
of code easier to understand for whoever reads it. You can write whatever you want in a
comment, as long as it is only one line long:

1
2
3
4

http://tinyurl.com/hut6nwu

This is a comment
print("Hello, World!")

>> Hello, World!

15Chapter 3. Introduction to Programming

Only write a comment if you are doing something unusual in your code, or explaining
something that is not obvious in the code itself. Use comments sparingly—do not comment
on every line of code you write—save them for special situations. Here is an example of an
unnecessary comment:

1
2
3
4
5

http://tinyurl.com/jpzlwqq

print Hello, World!
print("Hello, World!")

It is unnecessary because it is already very clear what the line of code does. Here is an
example of a good comment:

1
2
3
4
5
6
7
8
9
10

http://tinyurl.com/z52c8z8

import math

length of a diagonal
l = 4
w = 10
d = math.sqrt(l**2 + w**2)

Even if you understood exactly how this code works, you still might not know how to calculate
the length of a diagonal of a rectangle, so the comment is useful.

Printing
You are not limited to printing Hello, World! in your programs. You can print whatever
you'd like, as long as you surround it with quotes:

1
2
3
4

http://tinyurl.com/zh5g2a3

print("Python")

>> Python

16 Part I Introduction to Programming

1
2
3
4

http://tinyurl.com/hhwqva2

print("Hola!")

>> Hola!

Lines
Python programs are made up of lines of code. Take a look at this program:

1
2
3
4
5
6

http://tinyurl.com/jq2w5ro

line1
line2
line3

There are three lines of code. It is useful to refer to each piece of code by the line it is on.
In IDLE, you can go to "Edit" and select "Go to Line" to jump to a particular line in your
program. You can only enter one line of code into the shell at once. You cannot copy and
paste multiple lines.

Sometimes a piece of code is long and takes up more than one line. Code surrounded by
three quotes, parentheses, brackets and braces can extend to a new line:

1
2
3
4
5
6

http://tinyurl.com/zcdx3yo

print("""This is a really really
really really long line of
code.""")

You can use a backward slash \ to extend code to the next line when you wouldn't normally
be able to:

17Chapter 3. Introduction to Programming

1
2
3
4
5
6

http://tinyurl.com/hjcf2sa

print\
("""This is a really really
really long line of code.""")

This example and the previous example have the same output. The slash allowed me to put
("""This is a really really really long line of code.""") and
print on separate lines, which otherwise is not allowed.

Keywords
Programming languages like Python have words with special meanings, called keywords.
for, a keyword you've already seen, is used to execute code multiple times. You will learn
more keywords throughout this chapter.

Spacing
Let's take another look at your program that prints Hello, World! a hundred times:

1
2
3
4
5

http://tinyurl.com/glp9xq6

for i in range(100):

print("Hello, World!")

As I noted earlier, print is indented four spaces. I will cover why shortly, but it lets Python
know when blocks of code begin and end. In the meantime, please be aware that whenever
you see an indent in an example, it is an indent of four spaces. Without proper spacing,
your program will not work.

Other programming languages do not use spacing like this; they use keywords or brackets
instead. Here is the same program written in another programming language called
JavaScript:

18 Part I Introduction to Programming

1
2
3
4
5
6
7
8
9
10

http://tinyurl.com/hwa2zae

This is a JavaScript program.
It will not work.

for (i = 0; i < 100; i++) {
console.log("Hello, World!");

}

Python proponents believe the required use of proper spacing makes Python less tedious
to read and write than other languages. Like in the example above, even when space is not
part of the programming language, programmers include it to make their code easier to
read.

Data Types
Python groups data into different categories called data types. In Python, each data
value, like 2 or "Hello, World!", is called an object. You will learn more about
objects in Part II, but for now think of an object as a data value in Python with three
properties: identity, data type, and value. An object's identity is its location in your
computer's memory, which never changes. The data type of an object is the category
of data the object belongs to, which determines the properties the object has and never
changes. The value of an object is the data it represents—the number 2, for example,
has a value of 2.

"Hello, World!" is an object with the data type str, short for string, and the
value "Hello, World!". When you refer to an object with the data type str, you
call it a string. A string is a sequence of one or more characters surrounded by quotes. A
character is a single symbol like a or 1. You can use single quotes or double quotes, but
the quotes at the beginning and end of a string must match:

1
2
3
4

http://tinyurl.com/hh5kjwp

"Hello, World!"

>> 'Hello, World!'

19Chapter 3. Introduction to Programming

1
2
3
4

http://tinyurl.com/heaxhsh

'Hello, World!'

>> 'Hello, World!'

Strings are used to represent text, and they have unique properties.

The numbers you used to do math in the previous section are also objects—but they are not
strings. Whole numbers (1, 2, 3, 4, etc.) have the data type int, short for integer. Like
strings, integers have unique properties. For example, you can multiply two integers, but you
cannot multiply two strings.

Decimal numbers (numbers with a decimal point) have a data type called float. 2.1,
8.2, and 9.9999 are all objects with the float data type. They are called floating-
point numbers. Like all data types, floating-point numbers have unique properties and
behave in a certain way, similarly to integers:

1
2
3
4

http://tinyurl.com/guoc4gy

2.2 + 2.2

>> 4.4

Objects with a bool data type are called booleans, and have a value of True or False:

1
2
3
4

http://tinyurl.com/jyllj2k

True

>> True

1
2
3
4

http://tinyurl.com/jzgsxz4

False

>> False

20 Part I Introduction to Programming

Objects with a data type NoneType always have the value None. They are used to represent
the absence of value:

1
2
3
4

http://tinyurl.com/h8oqo5v

None

I explain how to use the different data types throughout this chapter.

Constants and Variables
You can use Python to do math, just like you would a calculator. You can add, subtract,
divide, multiply, raise a number to a power, and much more. Remember to type all of the
examples in this section into the shell.

1
2
3
4

http://tinyurl.com/zs65dp8

2 + 2

>> 4

1
2
3
4

http://tinyurl.com/gs9nwrw

2 - 2

>> 0

1
2
3
4

http://tinyurl.com/hasegvj

4 / 2

>> 2.0

1
2
3
4

http://tinyurl.com/z8ok4q3

2 * 2

 >> 4

21Chapter 3. Introduction to Programming

A constant is a value that never changes. Each of the numbers in the previous example is a
constant; the number two will always represent the value 2. A variable, on the other hand,
refers to a value that can change. A variable consists of a name made up of one or more
characters. That name is assigned a value using the assignment operator (the = sign).

Some programming languages require the programmer to include variable "declarations"
that tell the programming language what data type the variable will be. For example, in the
C programming language, you create a variable like this:

1
2
3
4
5
6
7
8

Do not run.

int a;
a = 144;

Python makes it simpler; you create a variable simply by assigning a value to it with the
assignment operator:

1
2
3
4
5

http://tinyurl.com/hw64mrr

b = 100
b

>> 100

Here is how to change the value of a variable:

22 Part I Introduction to Programming

1
2
3
4
5
6
7
8
9

http://tinyurl.com/hw97que

x = 100
x

x = 200
x

>> 100
>> 200

You can also use two variables to perform arithmetic operations:

1
2
3
4
5
6
7
8
9

http://tinyurl.com/z8hv5j5

x = 10
y = 10
z = x + y
z
a = x - y
a

>> 20
>> 0

Often when programming, you want to increment (increase) or decrement (decrease) the
value of a variable. Because this is such a standard operation, Python has a special syntax—a
shortcut—for incrementing and decrementing variables. To increment a variable, you assign
the variable to itself, and on the other side of the equals sign you add the variable to the
number you want to increment by:

1
2
3
4
5
6

http://tinyurl.com/zvzf786

x = 10
x = x + 1
x

>> 11

23Chapter 3. Introduction to Programming

To decrement a variable, you do the same thing, but instead subtract the number you want
to decrement by:

1
2
3
4
5
6

http://tinyurl.com/gmuzdr9

x = 10
x = x - 1
x

>> 9

These examples are perfectly valid, but there is a shorter method you should use instead:

1
2
3
4
5
6

http://tinyurl.com/zdva5wq

x = 10
x += 1
x

>> 11

1
2
3
4
5
6

http://tinyurl.com/jqw4m5r

x = 10
x -= 1
x

>> 9

Variables are not limited to storing integer values. They can refer to any data type:

1
2
3
4

http://tinyurl.com/jsygqcy

hi = "Hello, World!"

24 Part I Introduction to Programming

1
2
3
4

http://tinyurl.com/h47ty49

my_float = 2.2

1
2
3
4

http://tinyurl.com/hx9xluq

my_boolean = True

You can name variables whatever you'd like, as long as you follow four rules:

1. Variables can't have spaces. If you want to use two words in a variable, put an underscore
between them: i.e., my_variable = "A string!"

2. Variable names can only contain letters, numbers, and the underscore symbol.

3. You cannot start a variable name with a number. Although you can start a variable with an
underscore, it has a special meaning that I will cover later, so avoid using it until then.

4. You cannot use Python keywords for variable names. You can find a list of keywords at
http://theselftaughtprogrammer.io/keywords.

Syntax
Syntax is the set of rules, principles, and processes that govern the structure of sentences
in a given language, specifically word order.3 The English language has syntax, and so does
Python.

In Python, strings are always surrounded by quotes. This is an example of Python's syntax.
The following is a valid Python program:

1
2
3
4

http://tinyurl.com/j7c2npf

print("Hello, World!")

It is valid because you followed Python's syntax by using quotes around your text when you
defined a string. If you only used quotes on one side of your text, you would violate Python's
syntax, and your code would not work.

25Chapter 3. Introduction to Programming

Errors and Exceptions
If you write a Python program and disregard Python's syntax, you will get one or more errors
when you run your program. The Python shell will inform you your code did not work, and
it will give you information about the error. See what happens if you try to define a string in
Python with a quote on only one side:

1
2
3
4
5
6
7

http://tinyurl.com/hp2plhs

This code has an error.

my_string = "Hello World.

>> File "/Users/coryalthoff/PycharmProjects/se.py", line 1
my_string = 'd ^ SyntaxError: EOL while scanning string
literal

This message tells you there is a syntax error in your program. Syntax errors are fatal.
A program cannot run with a syntax error. When you try to run a program with a syntax
error, Python lets you know about it in the shell. The message tells you what file the error
was in, what line it occurred on, and what kind of error it was. Although this error may look
intimidating, they happen all the time.

When there is an error in your code, you should go to the line number the problem occurred
on and try to figure out what you did wrong. In this example, you would go to the first line of
your code. After staring at it for a while, you would eventually notice there is only one quote.
To fix the error, add a quote at the end of the string and rerun the program. From this point
forward, I will represent the output of an error like this:

>> SyntaxError: EOL while scanning string literal

For easier reading, I will only show the last line of the error.

Python has two kinds of errors: syntax errors and exceptions. Any error that is not a syntax
error is an exception. A ZeroDivisionError is an exception that occurs if you try
dividing by zero.

Unlike syntax errors, exceptions are not necessarily fatal (there is a way to make a program
run even if there is an exception, which you will learn about in the next chapter). When an

26 Part I Introduction to Programming

exception occurs, Python programmers say "Python (or your program) raised an exception."
Here is an example of an exception:

1
2
3
4
5
6

http://tinyurl.com/jxpztcx

This code has an error.

10 / 0

>> ZeroDivisionError: division by zero

If you indent your code incorrectly, you get an IndentationError:

1
2
3
4
5
6
7
8

http://tinyurl.com/gtp6amr

This code has an error.

y = 2
x = 1

>> IndentationError: unexpected indent

As you are learning to program, you will frequently get syntax errors and exceptions (including
ones I did not cover), but they will decrease over time. Remember, when you run into a syntax
error or exception, go to the line where the problem occurred and look at it and figure out the
solution (search the Internet for the error or exception if you are stumped).

Arithmetic Operators
Earlier, you used Python to do simple arithmetic calculations, like 4 / 2. The symbols
you used in those examples are called operators. Python divides operators into several
categories, and the ones you've seen so far are called arithmetic operators. Here are some
of the most common arithmetic operators in Python:

27Chapter 3. Introduction to Programming

When two numbers are divided there is a quotient and a remainder. The quotient is the
result of the division, and the remainder is what is left over. The modulo operator returns the
 remainder. For example, 13 divided by 5 is 2 remainder 3:

1
2
3
4

http://tinyurl.com/grdcl95

13 // 5

>> 2

1
2
3
4

http://tinyurl.com/zsqwukd

13 % 5

>> 3

When you use modulo with the number two as a divisor, if there is no remainder
(modulo returns 0), the number is even. If there is a remainder, the number is odd:

28 Part I Introduction to Programming

1
2
3
4
5

http://tinyurl.com/jerpe6u

even
12 % 2

>> 0

1
2
3
4
5

http://tinyurl.com/gkudhcr

odd
11 % 2

>> 1

There are two operators used for division. The first is //, which returns the quotient:

1
2
3
4

http://tinyurl.com/hh9fqzy

14 // 3

>> 4

The second is /, which returns the result of the first number divided by the second as a
floating-point number:

1
2
3
4

http://tinyurl.com/zlkjjdp

14 / 3

>> 4.666666666666667

You can raise a number by an exponentiation operator:

1
2
3

http://tinyurl.com/h8vuwd4

2 ** 2

>> 4

29Chapter 3. Introduction to Programming

The values (in this case numbers) on either side of an operator are called operands.
Together, two operands and an operator form an expression. When your program runs,
Python evaluates each expression and returns a single value. When you type the expression
2+2 into the shell, Python evaluates it to 4.

The order of operations is a set of rules used in mathematical calculations to evaluate
an expression. Remember Please Excuse My Dear Aunt Sally? It is an acronym to help
you remember the order of operations in math equations: parentheses, exponents,
multiplication, division, addition, and subtraction. Parentheses outrank exponents, which
outrank multiplication and division, which outrank addition and subtraction. If there is a tie
among operators, like in the case of 15 / 3 × 2, you evaluate from left to right. In this
instance, the answer is the result of 15 divided by 3 times 2. Python follows the same order
of operations when it evaluates mathematical expressions:

1
2
3
4

http://tinyurl.com/hgjyj7o

2 + 2 * 2

>> 6

1
2
3
4

http://tinyurl.com/hsq7rcz

(2 + 2) * 2

>> 8

In the first example, 2 * 2 is evaluated first because multiplication takes precedence over
addition.

In the second example, (2+2) is evaluated first, because Python always evaluates expressions
in parentheses first.

Comparison Operators
Comparison operators are another category of operators in Python. Similar to
arithmetic operators, they are used in expressions with operands on either side. Unlike
expressions with arithmetic operators, expressions with comparison operators evaluate to
either True or False.

30 Part I Introduction to Programming

An expression with the > operator returns the value True if the number on the left is
greater than the number on the right, and False if it is not:

1
2
3
4

http://tinyurl.com/jm7cxzp

100 > 10

>> True

An expression with the < operator returns the value True if the number on the left is less
than the number on the right, and False if it is not:

1
2
3
4

http://tinyurl.com/gsdhr8q

100 < 10

>> False

An expression with the >= operator returns the value True if the number on the left
is greater than or equal to the number on the right. Otherwise, the expression returns
False:

31Chapter 3. Introduction to Programming

1
2
3
4

http://tinyurl.com/jy2oefs

2 >= 2

>> True

An expression with the <= operator returns the value True if the number on the left is
less than or equal to the number on the right. Otherwise, the expression returns False:

1
2
3
4

http://tinyurl.com/jk599re

2 >= 2

>> True

An expression with the == operator returns the value True if the two operands are
equal, and False if not:

1
2
3
4

http://tinyurl.com/j2tsz9u

2 == 2

1
2
3
4

> True

http://tinyurl.com/j5mr2q2

2 == 3

> False

An expression with the != operator returns True if the two operands are not equal, and
False otherwise:

1
2
3
4

http://tinyurl.com/gsw3zoe

1 != 2

>> True

32 Part I Introduction to Programming

1
2
3
4

http://tinyurl.com/z7pffk3

2 != 2

>> False

Earlier, you assigned variables to numbers, like x = 100, using =. It may be tempting to
read this in your head as "x equals 100," but don't. As you saw earlier, = is used to assign
a value to a variable, not to check for equality. When you see x = 100, think "x gets one
hundred." The comparison operator == is used to test for equality, so if you see x ==
100, then think "x equals 100."

Logical Operators
Logical operators are another category of operators in Python. Like comparison
 operators, logical operators also evaluate to True or False.

The Python keyword and takes two expressions and returns True if all the expressions
evaluate to True. If any of the expressions are False, it returns False:

1
2
3
4

http://tinyurl.com/zdqghb2

1 == 1 and 2 == 2

>> True

33Chapter 3. Introduction to Programming

1
2
3
4

http://tinyurl.com/zkp2jzy

1 == 2 and 2 == 2

>> False

1
2
3
4

http://tinyurl.com/honkev6

1 == 2 and 2 == 1

>> False

1
2
3
4

http://tinyurl.com/zjrxxrc

2 == 1 and 1 == 1

>> False

You can use the and keyword multiple times in one statement:

1
2
3
4

http://tinyurl.com/zpvk56u

1 == 1 and 10 != 2 and 2 < 10

>> True

The keyword or takes two or more expressions and evaluates to True if any of the expressions
evaluate to True:

1
2
3
4

http://tinyurl.com/hosuh7c

1==1 or 1==2

>> True

34 Part I Introduction to Programming

1
2
3
4

http://tinyurl.com/zj6q8h9

1==1 or 2==2

>> True

1
2
3
4

http://tinyurl.com/j8ngufo

1==2 or 2==1

>> False

1
2
3
4

http://tinyurl.com/z728zxz

2==1 or 1==2

>> False

Like and, you can use multiple or keywords in one statement:

1
2
3
4

http://tinyurl.com/ja9mech

1==1 or 1==2 or 1==3

>> True

This expression evaluates to True because 1==1 is True, even though the rest of the
expressions would evaluate to False.

Placing the keyword not in front of an expression will change the result of the evaluation
to the opposite of what it would have otherwise evaluated to. If the expression would have
evaluated to True, it will evaluate to False when preceded by not:

35Chapter 3. Introduction to Programming

1
2
3
4

http://tinyurl.com/h45eq6v

not 1 == 1

>> False

1
2
3
4

http://tinyurl.com/gsqj6og

not 1 == 2

>> True

Conditional Statements
The keywords if, elif, and else are used in conditional statements. Conditional
statements are a type of control structure: a block of code that makes decisions by
analyzing the values of variables. A conditional statement is code that can execute additional
code conditionally. Here is an example in pseudocode (A notation resembling code used to
illustrate an example) to clarify how this works:

1
2
3
4
5
6
7

Do not run

If (expression) Then
		 (code_area1)
Else
		 (code_area2)

This pseudocode explains that you can define two conditional statements that work
together. If the expression defined in the first conditional statement is True, all the code
defined in code_area1 is executed. If the expression defined in the first conditional
statement is False, all the code defined in code_area2 is executed. The first part
of the example is called an if-statement, and the second is called an else-
statement. Together, they form an if-else statement: a way for programmers
to say "if this happens do this, otherwise, do that." Here is an example of an if-else
statement in Python:

36 Part I Introduction to Programming

1
2
3
4
5
6
7
8

http://tinyurl.com/htvy6g3

home = "America"
if home == "America":

print("Hello, America!")
else:

print("Hello, World!")

>> Hello, America!

Lines 5 and 6 form an if-statement. An if-statement is made up of a line of code
starting with the if keyword, followed by an expression, a colon, an indentation, and one
or more lines of code to be executed if the expression in the first line evaluates to True.
Lines 7 and 8 form an else-statement. An else-statement starts with the else
keyword, followed by a colon, an indentation, and one or more lines of code to execute if the
expression in the if-statement evaluates to False.

Together they form an if-else statement. This example prints Hello, America!,
because the expression in the if-statement evaluates to True. If you change the
variable home to Canada, the expression in the if-statement evaluates to False,
the else-statement code will execute, and your program will print Hello, World!
instead.

1
2
3
4
5
6
7
8

http://tinyurl.com/jytyg5x

home = "Canada"
if home == "America":

print("Hello, America!")
else:

print("Hello, World!")

>> Hello, World!

37Chapter 3. Introduction to Programming

You can use an if-statement by itself:

1
2
3
4
5
6

http://tinyurl.com/jyg7dd2

home = "America"
if home == "America":

print("Hello, America!")

>> Hello, America!

You can have multiple if-statements in a row:

1
2
3
4
5
6
7
8
9
10

http://tinyurl.com/z24ckye

x = 2
if x == 2:

print("The number is 2.")
if x % 2 == 0:

print("The number is even.")
if x % 2 != 0:

print("The number is odd.")

>> The number is 2.
>> The number is even.

Each if-statement will execute its code only if its expression evaluates to True. In
this case, the first two expressions evaluate to True, so their code executes, but the third
expression evaluates to False, so its code does not execute.

If you want to get crazy, you can even put an if-statement inside of another if-
statement(this is called nesting):

38 Part I Introduction to Programming

1
2
3
4
5
6
7
8
9
10

http://tinyurl.com/zrodgne

x = 10
y = 11

if x == 10:
if y == 11:

print(x + y)

>> 21

In this case, x + y will only print if the expressions in both if-statements evaluate to
True. You cannot use an else-statement on its own; they can only be used at the end
of an if-else statement.

You can use the elif keyword to create elif-statements. elif stands for else if, and
elif-statements can be indefinitely added to an if-else statement to allow it
to make additional decisions.

If an if-else statement has elif-statements in it, the if-statement
expression is evaluated first. If the expression in that statement evaluates to True, only its
code is executed. However, if it evaluates to False, each consecutive elif-statement
is evaluated. As soon as an expression in an elif-statement evaluates to True, its code
is executed and no more code executes. If none of the elif-statements evaluate to
True, the code in the else-statement is executed. Here is an example of an if-else
statement with elif-statements in it:

39Chapter 3. Introduction to Programming

1
2
3
4
5
6
7
8
9
10
11
12
13
14

http://tinyurl.com/jpr265j

home = "Thailand"
if home == "Japan":

print("Hello, Japan!")
elif home == "Thailand":

print("Hello, Thailand!")
elif home == "India":

print("Hello, India!")
elif home == "China":

print("Hello, China!")
else:

print("Hello, World!")

>> Hello, Thailand!

Here is an example where none of the expressions in the elif-statements evaluate to
True, and the code in the else-statement is executed:

1
2
3
4
5
6
7
8
9
10
11
12
13

http://tinyurl.com/zdvuuhs

home = "Mars"
if home == "America":

print("Hello, America!")
elif home == "Canada":

print("Hello, Canada!")
elif home == "Thailand":

print("Hello, Thailand!")
elif home == "Mexico":

print("Hello, Mexico!")
else:

print("Hello, World!")

>> Hello, World!

Finally, you can have multiple if-statements and elif-statements in a row:

40 Part I Introduction to Programming

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

http://tinyurl.com/hzyxgf4

x = 100
if x == 10:

print("10!")
elif x == 20:

print("20!")
else:

print("I don't know!")

if x == 100:
print("x is 100!")

if x % 2 == 0:
print("x is even!")

else:
print("x is odd!")

>> I don't know!
>> x is 100!
>> x is even!

Statements
A statement is a technical term that describes various parts of the Python language. You
can think of a Python statement as a command or calculation. In this section, you will take a
detailed look at the syntax of statements. Don't worry if some of this seems confusing at first.
It will start making more sense the more time you spend practicing Python and will help you
understand several programming concepts.

Python has two kinds of statements: simple statements and compound statements.
Simple statements can be expressed in one line of code, whereas compound statements
generally span multiple lines. Here are some examples of simple statements:

1
2
3
4

http://tinyurl.com/jrowero

print("Hello, World!")

41Chapter 3. Introduction to Programming

>> Hello, World!

1
2
3
4

http://tinyurl.com/h2y549y

2 + 2

>> 4

if-statements, if-else statements, and the first program you wrote in this
chapter that printed Hello, World! one hundred times are all examples of compound
statements.

Compound statements are made up of one or more clauses. A clause consists of two or
more lines of code: a header followed by a suite(s). A header is a line of code in a clause
that contains a keyword, followed by a colon and a sequence of one or more lines of indented
code. After the indent, there are one or more suites. A suite is just a line of code in a clause.
The header controls the suites. Your program that prints Hello, World! a hundred times
is made up of a single compound statement:

1
2
3
4

http://tinyurl.com/zfz3eel

for i in range(100):
print("Hello, World!")

>> Hello, World!
>> Hello, World!
>> Hello, World!
...

The first line of the program is the header. It's made up of a keyword—for—followed
by a colon. After the indentation is a suite—print("Hello, World!"). In this case,
the header uses the suite to print Hello, World! a hundred times. The code in this
example is called a loop, which you learn more about in Chapter 7. This code only has one
clause.

A compound statement can be made up of multiple clauses. You already saw this with
if-else statements. Anytime an if-statement is followed by an else-
statement, the result is a compound statement with multiple clauses. When a compound
statement has multiple clauses, the header clauses work together. In the case of an if-

42 Part I Introduction to Programming

else compound statement, when the if-statement evaluates to True, the if-
statement suites execute, and the else-statement suites do not execute. When the
if-statement evaluates to False, the if-statement suites do not execute, but
the else-statement suites execute instead. The last example from the previous
section includes three compound statements:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

http://tinyurl.com/hpwkdo4

x = 100
if x == 10:

print("10!")
elif x == 20:

print("20!")
else:

print("I don't know!")

if x == 100:
print("x is 100!")

if x % 2 == 0:
print("x is even!")

else:
print("x is odd!")

>> I don't know!
>> x is 100!
>> x is even!

The first compound statement has three clauses; the second compound statement has one
clause, and the last compound statement has two clauses.

One last thing about statements, they can have spaces between them. Spaces between
statements do not affect the code. Sometimes spaces are used between statements to make
code more readable:

43Chapter 3. Introduction to Programming

1
2
3
4
5
6
7
8
9
10
11

http://tinyurl.com/zlgcwoc

print("Michael")

print("Jordan")

>> Michael
>> Jordan

Vocabulary
Comment: A line (or part of a line) of code written in English (or another language)
preceded by a unique symbol telling the programming language you are using know it should
ignore that line (or part of a line) of code.
Keyword: A word with a special meaning in a programming language. You can see all of
Python's keywords at http://theselftaughtprogrammer.io/keywords.
Data type: A category of data.
Object: A data value in Python with three properties: an identity, a data type, and a value.
Str: The data type of a string.
String: An object with the data type str. Its value is a sequence of one or more characters
surrounded by quotes.
Character: A single symbol like a or 1.
Int: The data type of whole numbers.
Integer: An object with the data type int. Its value is a whole number.
Float: The data type of decimal numbers.
Floating-point number: An object with the data type float. Its value is a decimal number.
Bool: The data type of boolean objects.
Boolean: An object with the data type bool. Its value is either True or False.
NoneType: The data type of None objects.
None: An object with the data type NoneType. Its value is always None.
Constant: A value that never changes.
Variable: A name assigned a value using the assignment operator.
Assignment operator: The = sign in Python.
Increment: Increasing the value of a variable.

44 Part I Introduction to Programming

Decrement: Decreasing the value of a variable.
Syntax: The set of rules, principles, and processes that govern the structure of sentences in
a given language, specifically word order.4

Syntax error: A fatal programming error caused by violating a programming language's
syntax.
Exception: A nonfatal programming error.
Operator: Symbols used with operands in an expression.
Arithmetic operator: A category of operators used in arithmetic expressions.
Operand: A value on either side of an operator.
Expression: Code with an operator surrounded by two operands.
Order of operations: A set of rules used in mathematical calculations to evaluate an
expression.
Comparison operator: A category of operators used in an expression that evaluate to
either True or False.
Logical operator: A category of operators that evaluate two expressions and return either
True or False.
Conditional statement: Code that can execute additional code conditionally.
Control structure: A block of code that makes decisions by analyzing the values of
variables.
Pseudocode: A notation resembling code used to illustrate an example.
if-else statement: A way for programmers to say "if this happens do this, otherwise, do
that."
if-statement: The first part of an if-else statement.
else-statement: The second part of an if-else statement.
elif-statement: Statements that can be indefinitely added to an if-else statement
to allow it to make additional decisions.
Statement: A command or calculation.
Simple statement: A statement that can be expressed in one line of code.
Compound statement: A statement that generally spans multiple lines of code.
Clause: The building blocks of compound statements.
A clause is made up of two or more lines of code: a header followed by a suite(s).
Header: A line of code in a clause containing a keyword, followed by a colon and a sequence
of one or more lines of indented code.
Suite: A line of code in a clause controlled by a header.

Challenges
1. Print three different strings.
2. Write a program that prints a message if a variable is less than 10, and different message
if the variable is greater than or equal to 10.

45Chapter 3. Introduction to Programming

3. Write a program that prints a message if a variable is less than or equal to 10, another
message if the variable is greater than 10 but less than or equal to 25, and another message
if the variable is greater than 25.
4. Create a program that divides two variables and prints the remainder.
5. Create a program that takes two variables, divides them, and prints the quotient.
6. Write a program with a variable age assigned to an integer that prints different strings
depending on what integer age is.

Solutions: http://tinyurl.com/zx7o2v9.

46

47

Chapter 4. Functions
" Functions should do one thing. They should do it well. They should do it only."
— Robert C. Martin

In this chapter, you will learn about functions: compound statements that can take
input, execute instructions, and return an output. Functions allow you to define and reuse
functionality in your programs.

Representing Concepts
From here on out, I will use a new convention (an agreed upon way of doing things) to
explain programming concepts. Here is an example of the convention I will use: print("
[what_you_want_to_print]"), which illustrates how to use the print function.

I combined Python code with brackets containing a description to illustrate this concept.
When I give an example like this, everything is valid Python code except the brackets and the
text inside of them, which need to be replaced with valid code when you follow the example.
The text inside the brackets is a hint for what code you should use to replace it. Python uses
brackets in its syntax, so I will use double brackets when they should remain in your code.

Functions
Calling a function means giving the function the input it needs to execute its instructions
and return an output. Each input to a function is a parameter. When you pass a parameter
to a function, it is called "passing" the function a parameter.

48 Part I Introduction to Programming

Functions in Python are similar to mathematical functions. If you don't remember functions
from algebra, here is an example:

1
2
3
4
5

Do not run.

f(x) = x * 2

The left side of the statement above defines a function, f, that takes one parameter, x. The
right side of the statement is the function's definition that uses the parameter passed in (x) to
make a calculation and return the result (the output). In this case, the value of the function is
defined as the function's parameter value multiplied by two.

In both Python and algebra you invoke a function with the following syntax:
[function_name]([parameters_separated_by_commas]). You call a
function by putting parentheses after the function name. The parameters go inside the
parentheses, with each parameter separated by a comma. For a mathematical function f,
defined as f(x) = 2 * x, the value of f(2) is 4, and the value of f(10) is 20.

Defining Functions
To create a function in Python you choose a function name, define its parameters, define
what it does, and define what value the function returns. Here is the syntax for defining a
function:

1
2
3
4
5
6

Do not run.

def [function_name]([parameters]):
[function_definition]

Your mathematical function f(x) = x * 2 looks like this in Python:

1
2
3
4
5

http://tinyurl.com/j9dctwl

def f(x):
return x * 2

49Chapter 4. Functions

The keyword def tells Python you are defining a function. After def, you specify the
function's name, which must follow the same rules used for variable names. By convention,
you should never use capital letters in a function name, and words should be separated by
underscores: like_this.

Once you've named your function, put a pair of parentheses after it. Inside the parentheses,
define the parameter(s) you want your function to accept.

After the parentheses put a colon and start a new line indented by four spaces (like any
other compound statement). Any code indented four spaces after the colon is the function's
definition. In this case, the function's definition is only one line—return x * 2. The
keyword return defines the value a function outputs when you call it, referred to as the
value the function returns.

You can use the syntax [function_name] ([parameters_separated_by_
commas]) to call a function in Python. Here is an example of calling a function, f from the
previous example, with 2 as a parameter:

1
2
3
4
5
6
7
8

http://tinyurl.com/zheas3d

Continue from
last example

f(2)

The console didn't print anything. You can save your function's output in a variable and pass
it to the print function:

1
2
3
4
5
6
7
8
9

http://tinyurl.com/gspjcgj

Continue from
last example

result = f(2)
print(result)

>> 4

50 Part I Introduction to Programming

You can save the result your function returns in a variable whenever you need to use the value
later in your program:

1
2
3
4
5
6
7
8
9
10
11
12
13
14

http://tinyurl.com/znqp8fk

def f(x):
return x + 1

z = f(4)

if z == 5:
print("z is 5")

else:
print("z is not 5")

>> z is 5

A function can have one parameter, multiple parameters, or no parameters. To define a
function that does not require parameters, leave the parentheses empty when you define your
function:

1
2
3
4
5
6
7
8
9

http://tinyurl.com/htk7tr6

def f():
return 1 + 1

result = f()
print(result)

>> 2

If you want your function to accept more than one parameter, you must separate each
parameter inside the parentheses with a comma:

51Chapter 4. Functions

1
2
3
4
5
6
7
8
9

http://tinyurl.com/gqmkft7

def f(x, y, z):
return x + y + z

result = f(1, 2, 3)
print(result)

>> 6

Finally, a function does not have to include a return statement. If a function doesn't have
a return statement, it returns None:

1
2
3
4
5
6
7
8
9

http://tinyurl.com/j8qyqov

def f():
z = 1 + 1

result = f()
print(result)

>> None

Built-In Functions
Python comes with a library of functions built into the programming language called built-
in functions. They perform all sorts of different computations and tasks and are ready to
use without any work on your part. You've already seen one example of a built-in function:
the first program you wrote used the print function to print "Hello, World!".

len is another built-in function. It returns the length of an object—for example, the length
of a string (the number of characters in it):

1
2
3
4

http://tinyurl.com/zfkzqw6

len("Monty")

52 Part I Introduction to Programming

>> 5

1
2
3
4

http://tinyurl.com/h75c3cf

len("Python")

>> 6

The built-in str function takes an object and returns a new object with a str data type. For
example, you can use str to convert an integer to a string:

1
2
3
4

http://tinyurl.com/juzxg2z

str(100)

>> '100'

The int function takes an object and returns an integer object:

1
2
3
4

http://tinyurl.com/j42qhkf

int("1")

>> 1

The float function takes an object and returns a floating-point number object:

1
2
3
4

http://tinyurl.com/hnk8gh2

float(100)

>> 100.0

The parameter you pass to a str, int, or float function must be able to become a string,
integer, or a floating-point number. The str function can accept most objects a parameter,
but the int function can only accept a string with a number in it or a floating-point object.

53Chapter 4. Functions

The float function can only take a string with a number in it or an integer object:

1
2
3
4
5
6
7
8
9

http://tinyurl.com/jcchmlx

int("110")
int(20.54)

float("16.4")
float(99)

>> 110
>> 20
>> 16.4
>> 99.0

Python will raise an exception if you try to pass the int or float function a parameter it
cannot convert to an integer or a floating-point number:

1
2
3
4

http://tinyurl.com/zseo2ls

int("Prince")

>> ValueError: invalid literal for int() with base 10:
'Prince'

input is a built-in function that collects information from the person using the program:

1
2
3
4
5
6
7
8
9

http://tinyurl.com/zynprpg

age = input("Enter your age:")
int_age = int(age)
if int_age < 21:

print("You are young!")
else:

print("Wow, you are old!")

>> Enter your age:

54 Part I Introduction to Programming

The input function takes a string as a parameter and displays it to the person using the
program in the shell. The user can then type a response into the shell, and you can save their
response in a variable—in this case, to the variable age.

Next, use the int function to change the variable age from a string to an integer. The
input function collects data from the user as a str, but you want your variable to be an
int so you can compare it to other integers. Once you have an integer, your if-else
statement determines which message prints for the user, depending on what they typed
into the shell. If the user types a number less than 21, You are young! prints. If the user
types a number greater than 21, Wow, you are old! prints.

Reusing Functions
Functions are not only used to compute and return values. Functions can encapsulate
functionality you want to reuse:

1
2
3
4
5
6
7
8
9
10
11
12

http://tinyurl.com/zhy8y4m

def even_odd(x):
if x % 2 == 0:

print("even")
else:

print("odd")

even_odd(2)
even_odd(3)

>> even
>> odd

You didn't define a value for your function to return, but your function is still useful. It tests if
x % 2 == 0, and prints whether x is even or odd.

Functions allow you to write less code because you can reuse functionality. Here is an example
of a program written without functions:

55Chapter 4. Functions

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

http://tinyurl.com/jk8lugl

n = input("type a number:")
n = int(n)

if n % 2 == 0:
print("n is even.")

else:
print("n is odd.")

n = input("type a number:")
n = int(n)
if n % 2 == 0:

print("n is even.")
else:

print("n is odd.")

n = input("type a number:")
n = int(n)
if n % 2 == 0:

print("n is even.")
else:

print("n is odd.")

>> type a number:

This program asks the user to enter a number three times. Then, an if-else statement
checks if the number is even. If it is, n is even. prints, otherwise n is odd. prints.

The problem with the program is it repeats the same code three times. You can make this
program shorter and easier to read by putting your functionality in a function and calling it
three times:

56 Part I Introduction to Programming

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

http://tinyurl.com/zzn22mz

def even_odd():
n = input("type a number:")
n = int(n)
if n % 2 == 0:

print("n is even.")
else:

print("n is odd.")

even_odd()
even_odd()
even_odd()

>> type a number:

This new program has the same functionality as your previous program, but because you put
your functionality in a function you can call whenever needed, your program is much shorter
and easier to read.

Required and Optional Parameters
There are two types of parameters a function can accept. The parameters you've seen so far
are called required parameters. When a user calls a function, they must pass all of the
required parameters into it, or Python will raise an exception.

Python has another kind of parameter—optional parameters—that let the caller of the
function pass in a parameter if necessary, but it is not required. If an optional parameter is not
passed in, the function will use its default value instead. Optional parameters are defined with
the following syntax: [function_name]([parameter_name]= [parameter_
value]). Like required parameters, optional parameters must be separated by commas.
Here is an example of a function that takes an optional parameter:

57Chapter 4. Functions

1
2
3
4
5
6
7
8
9

http://tinyurl.com/h3ych4h

def f(x=2):
return x**x

print(f())
print(f(4))

>> 4
>> 256

First, you call your function without passing in a parameter. Because the parameter is optional,
x automatically gets 2 and the function returns 4.

Next, you call your function and pass in 4 as a parameter. The function ignores the default
value, x gets 4 and the function returns 256. You can define a function that has both
required and optional parameters, but you must define all the required parameters before
the optional ones:

1
2
3
4
5
6
7
8
9

http://tinyurl.com/hm5svn9

def add_it(x, y=10):
return x + y

result = add_it(2)
print(result)

>> 12

Scope
Variables have an important property called scope. When you define a variable, its
scope refers to what part of your program can read and write to it. Reading a variable
means finding its value. Writing a variable means changing its value. A variable's scope is
determined by where in your program it is defined. If you define a variable outside of a
function (or class, which you learn about in Part II), the variable has a global scope: It

58 Part I Introduction to Programming

can be read or written to from anywhere in your program. A variable with global scope
is called a global variable. If you define a variable inside of a function (or class), it
has local scope: your program can only read or write to it in the function (or class) the
variable was defined within. Here are variables with global scope:

1
2
3
4
5
6

http://tinyurl.com/zhmxnqt

x = 1
y = 2
z = 3

These variables were not defined inside of a function (or class), and therefore have a global
scope. This means you can read or write to them from anywhere—including inside of a
function:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

http://tinyurl.com/hgvnj4p

x = 1
y = 2
z = 3

def f():
print(x)
print(y)
print(z)

f()

>> 1
>> 2
>> 3

If you define these same variables inside of a function, you can only read or write to them
from inside of that function. If you try to access them outside of the function they were
defined in Python raises an exception:

59Chapter 4. Functions

1
2
3
4
5
6
7
8
9
10
11
12

http://tinyurl.com/znka93k

def f():
x = 1
y = 2
z = 3

print(x)
print(y)
print(z)

>> NameError: name 'x' is not defined

If you define variables inside your function, your code works:

1
2
3
4
5
6
7
8
9
10
11
12
13

http://tinyurl.com/z2k3jds

def f():
x = 1
y = 2
z = 3
print(x)
print(y)
print(z)

f()

>> 1
>> 2
>> 3

Trying to use a variable defined inside of a function outside of it is similar to using a variable
that hasn't been defined yet, which will cause Python to raise the same exception:

60 Part I Introduction to Programming

1
2
3
4
5

http://tinyurl.com/zn8zjmr

if x > 100:
print("x is > 100")

>> NameError: name 'x' is not defined

You can write to a global variable from anywhere, but writing to a global variable inside of
a local scope takes an extra step. You must explicitly use the global keyword, followed by
the variable you want to change. Python makes you take this extra step to ensure that if you
define the variable x inside of a function, you will not accidentally change the value of any
previously defined variables outside of your function. Here is an example of writing to a
global variable from inside a function:

1
2
3
4
5
6
7
8
9
10
11
12
13

http://tinyurl.com/zclmda7

x = 100

def f():
global x
x += 1
print(x)

f()

>> 101

Without scope, you could access every variable anywhere in your program, which would be
problematic. If you have a large program, and you write a function that uses the variable
x, you might accidently change the value of a variable also called x that you previously
defined elsewhere in your program. Mistakes like that can alter the behavior of your
program and may cause errors or unexpected results. The larger your program gets, and
the more variables it has, the more likely this becomes.

61Chapter 4. Functions

Exception Handling
Relying on user input from the input function means you do not control the input to your
program—the user does, and that input could cause an error. For example, say you write
a program that collects two numbers from a user and prints the result of the first number
divided by the second number:

1
2
3
4
5
6
7
8

http://tinyurl.com/jcg5qwp

a = input("type a number:")
b = input("type another:")
a = int(a)
b = int(b)
print(a / b)

>> type a number:
>> 10
>> type another:
>> 5
>> 2

Your program appears to work. However, you will run into a problem if the user inputs 0 as
the second number:

1
2
3
4
5
6
7
8

http://tinyurl.com/ztpcjs4

a = input("type a number:")
b = input("type another:")
a = int(a)
b = int(b)
print(a / b)

>> type a number:
>> 10
>> type another:
>> 0
>> ZeroDivisionError: integer division or modulo by zero

You cannot just hope someone using this program will not enter 0 as the second number.

62 Part I Introduction to Programming

One way to solve this is to use exception handling, which allows you to test for error
conditions, "catch" exceptions if they occur, and decide how to proceed.

The keywords try and except are used for exception handling. When you change this
program to use exception handling, if a user enters 0 as the second number, instead of raising
an exception, the program could print a message telling them not to enter 0.

Each exception in Python is an object, so you can use them in your programs. You can
see a list of built-in exceptions here: https://www.tutorialspoint.com/python/standard_
exceptions.htm. If you are in a situation where you think your code may raise an exception,
use a compound statement with the keywords try and except to catch it.

The try clause contains the error that could occur. The except clause contains code that
will only execute if the exception in your try clause occurs. Here is an example of how you
can use exception handling in your program, so if a user enters 0 as the second number, your
program doesn't break:

1
2
3
4
5
6
7
8
9
10
11

http://tinyurl.com/j2scn4f

a = input("type a number:")
b = input("type another:")
a = int(a)
b = int(b)
try:

print(a / b)
except ZeroDivisionError:

print("b cannot be zero.")

>> type a number:
>> 10
>> type another:
>> 0
>> b cannot be zero.

If the user enters anything other than 0 for b, the code in the try block executes, and the
except block doesn't do anything. If the user enters 0 for b, instead of raising an exception,
the code in your except block is executed and your program prints b cannot be zero.

Your program will also break if the user enters a string that Python cannot convert to an
integer:

63Chapter 4. Functions

1
2
3
4
5
6
7
8

a = input("type a number:")
b = input("type another:")
a = int(a)
b = int(b)
try:

print(a / b)
except ZeroDivisionError:

print("b cannot be zero.")

>> type a number:
>> Hundo
>> type another:
>> Million
>> ValueError: invalid literal for int() with base 10:
'Hundo'

You can fix this by moving the part of your program that collects input inside of your
try statement, and telling your except statement to look out for two exceptions: a
ZeroDivisionError and a ValueError. A ValueError occurs if you give the
built-in functions int, string, or float bad input. You can have your except statement
catch two exceptions by adding parentheses around except and separating the exceptions
with a comma:

1
2
3
4
5
6
7
8
9
10
11
12

http://tinyurl.com/jlus42v

try:
a = input("type a number:")
b = input("type another:")
a = int(a)
b = int(b)
print(a / b)

except(ZeroDivisionError,
ValueError):

print("Invalid input.")

>> type a number:
>> Hundo
>> type another:
>> Million
>> Invalid input.

64 Part I Introduction to Programming

Don't use variables defined in a try statement in an except statement, because an
exception could occur before the variable is defined, and an exception will get raised inside
of your except statement when you try to use it:

1
2
3
4
5
6
7
8

http://tinyurl.com/hockur5

try:
10 / 0
c = "I will never get defined."

except ZeroDivisionError:
print(c)

>> NameError: name 'c' is not defined

Docstrings
When you define a function with parameters, sometimes the parameters have to be a
particular data type for the function to work. How do you communicate this to whoever calls
your function? When you write a function, it is good practice to leave a comment called a
docstring at the top of the function explaining what data type each parameter needs to be.
Docstrings explain what the function does, and document what kinds of parameters it needs:

1
2
3
4
5
6
7
8
9
10
11

http://tinyurl.com/zhahdcg

def add(x, y):
"""
Returns x + y.
:param x: int.
:param y: int.
:return: int sum of x and y.
"""
return x + y

The first line of the docstring clearly explains what your function does, so when other
developers reuse your function or method, they do not have to read through all of your
code to figure out its purpose. The rest of the docstring's lines list the function's parameters,
the parameter types, and what it returns. Docstrings will help you program faster because
you can read a docstring to figure out what a function does, instead of reading all the code.

65Chapter 4. Functions

To keep the examples in this book concise, I've omitted docstrings I would usually include.
Normally when I write code, I include docstrings to make my code easy to understand for
everyone who reads it in the future.

Only Use a Variable When Needed
Only save data in a variable if you are going to use it later. For example, do not store an
integer in a variable just to print it:

1
2
3
4
5

http://tinyurl.com/zptktex

x = 100
print(x)

>> 100

Instead, pass the integer directly to the print function:

1
2
3
4

http://tinyurl.com/hmwr4kd

print(100)

>> 100

I violate this rule in many examples in this book to make what I'm doing easy for you to
understand. You don't need to do the same when you are writing code.

Vocabulary
Functions: Compound statements that can take input, execute instructions, and return an
output.
Convention: An agreed upon way of doing things.
Calling: Giving the function the input it needs to execute its instructions and return an
output.
Parameter: Data passed into a function.
Required parameter: A non-optional parameter.
Optional parameter: An optional parameter.
Built-in function: A function that comes with Python.
Scope: Where a variable can be read or written to.

66 Part I Introduction to Programming

Global scope: The scope of a variable that can be read or written to from anywhere in a
program.
Global variable: A variable with a global scope.
Local scope: The scope of a variable that can only be read or written to from the function
(or class) the variable was defined within.
Exception handling: A programming concept that allows you to test for error conditions,
"catch" exceptions if they occur, and decide how to proceed.
Docstring: Docstrings explain what a function does, and documents what kinds of
parameters it takes.

Challenges
1. Write a function that takes a number as an input and returns that number squared.
2. Create a function that accepts a string as a parameter and prints it.
3. Write a function that takes three required parameters and two optional parameters.
4. Write a program with two functions. The first function should take an integer as a parameter
and return the result of the integer divided by 2. The second function should take an integer
as a parameter and return the result of the integer multiplied by 4. Call the first function, save
the result as a variable, and pass it as a parameter to the second function.
5. Write a function that converts a string to a float and returns the result. Use exception
handling to catch the exception that could occur.
6. Add a docstring to all of the functions you wrote in challenges 1–5.

Solutions: http://tinyurl.com/hkzgqrv.

67

Chapter 5. Containers
"The fool wonders, the wise man asks."
— Benjamin Disraeli

In Chapter 3, you learned how to store objects in variables. In this chapter, you find out
how to store objects in containers. Containers are like filing cabinets: they keep your data
organized. You will learn three commonly used containers: lists, tuples, and dictionaries.

Methods
In Chapter 4, you learned about functions. Python has a similar concept called methods.
Methods are functions closely associated with a given type of data. Methods execute code
and can return a result just like a function. Unlike a function, you call a method on an object.
You can also pass them parameters. Here is an example of calling the methods upper and
replace on a string:

1
2
3
4

http://tinyurl.com/zdllght

"Hello".upper()

>> 'HELLO'

1
2
3
4

http://tinyurl.com/hfgpst5

"Hello".replace("o", "@")

>> 'Hell@'

You will learn more about methods in Part II.

Lists
A list is a container that stores objects in a specific order.

68 Part I Introduction to Programming

Lists are represented with brackets. There are two syntaxes you can use to create a list. You
can create an empty list with the list function:

1
2
3
4
5

http://tinyurl.com/h4go6kg

fruit = list()
fruit

>> []

Or, with brackets:

1
2
3
4
5

http://tinyurl.com/jft8p7x

fruit = []
fruit

>> []

You can create a list with items already in it by using the second syntax [], and placing each
item you want in the list inside the brackets, separated by commas:

1
2
3
4
5

http://tinyurl.com/h2y8nos

fruit = ["Apple", "Orange", "Pear"]
fruit

>> ['Apple', 'Orange', 'Pear']

There are three items in your list: "Apple", "Orange", and "Pear". Lists store items
in order. Unless you change the order of your list, "Apple" will always be the first item,
"Orange" the second, and "Pear" the third. "Apple" is at the beginning of the list, and

69Chapter 5. Containers

"Pear" is at the end. Add a new item to a list using the append method:

1
2
3
4
5
6
7

http://tinyurl.com/h9w3z2m

fruit = ["Apple", "Orange", "Pear"]
fruit.append("Banana")
fruit.append("Peach")
fruit

>> ['Apple', 'Orange', 'Pear', 'Banana', 'Peach']

Each object passed to the append method is now an item in your list. append always adds a
new item to the end of the list.

Lists are not limited to storing strings—they can store any data type:

1
2
3
4
5
6
7
8
9

http://tinyurl.com/zhpntsr

random = []
random.append(True)
random.append(100)
random.append(1.1)
random.append("Hello")
random

>> [True, 100, 1.1, 'Hello']

Strings, lists and tuples are iterable. An object is iterable when you can access each item
using a loop. Objects that are iterable are called iterables. Each item in an iterable has an
index—a number representing the item's position in the iterable. The first item in a list has
an index of 0, not 1.

In the following example, "Apple" is at index 0, "Orange" is at index 1, and "Pear" is
at index 2:

1
2
3
4

http://tinyurl.com/z8zzk8d

fruit = ["Apple", "Orange", "Pear"]

70 Part I Introduction to Programming

You can retrieve an item with its index using the syntax [list_name][[index]]:

1
2
3
4
5
6
7

http://tinyurl.com/jqtlwpf

fruit = ["Apple", "Orange", "Pear"]
fruit[0]
fruit[1]
fruit[2]

>> 'Apple'
>> 'Orange'
>> 'Pear'

If you try to access an index that doesn't exist, Python raises an exception:

1
2
3
4
5

http://tinyurl.com/za3rv95

colors = ["blue", "green", "yellow"]
colors[4]

>> IndexError: list index out of range

Lists are mutable. When a container is mutable, you can add or remove objects from the
container. You can change an item in a list by assigning its index to a new object:

1
2
3
4
5
6
7

http://tinyurl.com/h4ahvf9

colors = ["blue", "green", "yellow"]
colors
colors[2] = "red"
colors

>> ['blue', 'green', 'yellow']
>> ['blue', 'green', 'red']

You can remove the last item from a list using the method pop:

71Chapter 5. Containers

1
2
3
4
5
6
7
8

http://tinyurl.com/j52uvmq

colors = ["blue", "green", "yellow"]
colors
item = colors.pop()
item
colors

>> ['blue', 'green', 'yellow']
>> 'yellow'
>> ['blue', 'green']

You cannot use pop on an empty list. If you try to, Python will raise an exception.

You can combine two lists with the addition operator:

1
2
3
4
5
6

http://tinyurl.com/jjxnk4z

colors1 = ["blue", "green", "yellow"]
colors2 = ["orange", "pink", "black"]
colors1 + colors2

>> ['blue', 'green', 'yellow', 'orange', pink, 'black']

You can check if an item is in a list with the keyword in:

1
2
3
4
5

http://tinyurl.com/z4fnv39

colors = ["blue", "green"," yellow"]
"green" in colors

>> True

Use the keyword not to check if an item is not in a list:

72 Part I Introduction to Programming

1
2
3
4
5

http://tinyurl.com/jqzk8pj

colors = ["blue", "green", "yellow"]
"black" not in colors

>> True

You can get the size of a list (the number of items in it) with the len function:

1
2
3
4

http://tinyurl.com/hhx6rx4

len(colors)

>> 3

Here is an example of how you might use a list in practice:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

http://tinyurl.com/gq7yjr7

colors = ["purple",
"orange",
"green"]

guess = input("Guess a color:")

if guess in colors:
print("You guessed correctly!")

else:
print("Wrong! Try again.")

>> Guess a color:

Your colors list contains different strings representing colors. Your program uses the built-
in input function to ask the user to guess a color, and you save their answer in a variable. If
their answer is in the colors list, your program lets the user know they guessed correctly.
Otherwise, it prompts them to guess again.

73Chapter 5. Containers

Tuples
A tuple is a container that stores objects in a specific order. Unlike lists, tuples are
immutable, which means their contents cannot change. Once you create a tuple, you
cannot modify the value of any of the items in it, add new items to it, or remove items from
it. You represent tuples with parentheses. You must separate items in a tuple with commas.
There are two syntaxes to create a tuple:

1
2
3
4
5

http://tinyurl.com/zo88eal

my_tuple = tuple()
my_tuple

>> ()

And:

1
2
3
4
5

http://tinyurl.com/zm3y26j

my_tuple = ()
my_tuple

>> ()

To add objects to a tuple, create one with the second syntax with each item you want to add,
separating them with commas:

1
2
3
4
5

http://tinyurl.com/zlwwfe3

rndm = ("M. Jackson", 1958, True)
rndm

>> ('M. Jackson', 1958, True)

Even if a tuple only has one item in it, you need to put a comma after it. That way, Python
can differentiate it from a number surrounded by parentheses that denote its position in the
order of operations:

74 Part I Introduction to Programming

1
2
3
4
5
6
7
8
9

http://tinyurl.com/j8mca8o

this is a tuple
("self_taught",)

this is not a tuple
(9) + 1

>> ('self_taught',)
>> 10

You cannot add new items to a tuple or change it once you've created it. If you try to change
an object in a tuple after you've created it, Python will raise an exception:

1
2
3
4
5
6
7
8
9

http://tinyurl.com/z3x34nk

dys = ("1984",
"Brave New World",
"Fahrenheit 451")

dys[1] = "Handmaid's Tale"

>> TypeError: 'tuple' object does not support item assignment

You can get items from a tuple the same way you would from a list—by referencing the item's
index:

1
2
3
4
5
6
7
8
9

http://tinyurl.com/z9dc6lo

dys = ("1984",
"Brave New World",
"Fahrenheit 451")

dys[2]

75Chapter 5. Containers

>> 'Fahrenheit 451'

You can check if an item is in a tuple using the keyword in:

1
2
3
4
5
6
7
8
9

http://tinyurl.com/j3bsel7

dys = ("1984",
"Brave New World",
"Fahrenheit 451")

"1984" in dys

>> True

Put the keyword not before in to check if an item is not in a tuple:

1
2
3
4
5
6
7
8
9

http://tinyurl.com/jpdjjv9

dys = ("1984",
"Brave New World",
"Fahrenheit 451")

"Handmaid's Tale" not in dys

>> True

You may be wondering why you would want to use a data structure that appears to be a
less flexible list. Tuples are useful when you are dealing with values you know will never
change, and you want to ensure other parts of your program won't change them. Geographic
coordinates are an example of data that is useful to store in a tuple. You should store the
longitude and latitude of a city in a tuple because those values are never going to change
and storing the data in a tuple ensures other parts of your program can't accidentally change
them. Tuples—unlike lists—can be used as keys in dictionaries, which you will learn about in
the next section of this chapter.

76 Part I Introduction to Programming

Dictionaries
Dictionaries are another built-in container for storing objects. They are used to link one
object, called a key, to another object—called the value. Linking one object to another is
called mapping. The result is a key-value pair. You add key-value pairs to a dictionary.
You can then look up a key in the dictionary and get its value. You cannot, however, use a
value to look up a key.

Dictionaries are mutable, so you can add new key-value pairs to them. Unlike lists and tuples,
dictionaries do not store objects in a specific order. Their usefulness relies on the associations
formed between keys and values, and there are many situations where you need to store data
in pairs. For example, you could store information about someone in a dictionary. You could
map a key called height to a value representing the person's height, a key called eyecolor to a
value representing the person's eye color and a key called nationality to a value representing
the person's nationality.

Dictionaries are represented with curly brackets. There are two syntaxes for creating
dictionaries:

1
2
3
4
5

http://tinyurl.com/zfn6jmw

my_dict = dict()
my_dict

>> {}

77Chapter 5. Containers

And:

1
2
3
4
5

http://tinyurl.com/jfgemf2

my_dict = {}
my_dict

>> {}

You can add key-value pairs to a dictionary when you create it. The first syntax has the
key separated from the value by an assignment operator, and the second has the key
separated from the value by a colon. A comma must separate each key-value pair. Unlike a
tuple, if you have just one key-value pair, you do not need a comma after it. Here is how
you add key-value pairs to a dictionary when you create it:

1
2
3
4
5
6
7
8

http://tinyurl.com/hplqc4u

fruits = {"Apple":
"Red",
"Banana":
"Yellow"}

fruits

>> {'Apple': 'Red', 'Banana': 'Yellow'}

Your shell output might list the dictionary items in a different order than this example because
dictionaries do not store their keys in order, and Python prints the items in an arbitrary order
(this applies to all the examples in this section).

Dictionaries are mutable. Once you've created a dictionary, you can add key-value pairs to it
with the syntax [dictionary_name][[key]]=[value], and look up a value using a
key with the syntax [dictionary_name][key]:

78 Part I Introduction to Programming

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22

http://tinyurl.com/grc28lh

facts = dict()

add a value
facts["code"] = "fun"
look up a key
facts["code"]

add a value
facts["Bill"] = "Gates"
look up a key
facts["Bill"]

add a value
facts["founded"] = 1776
look up a key
facts["founded"]

>> 'fun'
>> Gates
>> 1776

Any object can be a dictionary value. In the previous example, the first two values are strings,
and the last value, 1776, is an integer.

Unlike a dictionary value, a dictionary key must be immutable. A string or a tuple can be a
dictionary key, but not a list or a dictionary.

Use the in keyword to check if a key is in a dictionary. You cannot use the in keyword to
check if a value is in a dictionary:

79Chapter 5. Containers

1
2
3
4
5
6
7
8

http://tinyurl.com/hgf9vmp

bill = {"Bill Gates":
"charitable"}

"Bill Gates" in bill

>> True

If you try to access a key that isn't in a dictionary, Python will raise an exception.

Add the keyword not to in to check if a key is not in a dictionary:

1
2
3
4
5
6
7
8

http://tinyurl.com/he3g993

bill = {"Bill Gates":
"charitable"}

"Bill Doors" not in bill

>> True

You can delete a key-value pair from a dictionary with the keyword del:

1
2
3
4
5
6
7
8
9
10
11

http://tinyurl.com/htrd9lj

books = {"Dracula": "Stoker",
"1984": "Orwell",
"The Trial": "Kafka"}

del books["The Trial"]

books

>> {'Dracula': 'Stoker', "1984": 'Orwell'}

80 Part I Introduction to Programming

Here is an example of a program using a dictionary:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

http://tinyurl.com/gnjvep7

rhymes = {"1": "fun",
"2": "blue",
"3": "me",
"4": "floor",
"5": "live"
}

n = input("Type a number:")
if n in rhymes:

rhyme = rhymes[n]
print(rhyme)

else:
print("Not found.")

>> Type a number:

Your dictionary (rhymes) has six song names (keys) mapped to six musicians (values). You
ask the user to type the name of a song and save their response in a variable. Before you
look up their response in your dictionary, check to make sure the key exists using the in
keyword. If the key exists, you look up the name of the song in your dictionary and print
the name of the artist who sings it. Otherwise, you print a message letting the user know
the name of the song is not available.

Containers in Containers
You can store containers in other containers. For example, you can store lists in a list:

81Chapter 5. Containers

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

http://tinyurl.com/gops9fz

lists = []
rap = ["Kanye West",

"Jay Z",
"Eminem",
"Nas"]

rock = ["Bob Dylan",
"The Beatles",
"Led Zeppelin"]

djs = ["Zeds Dead",
"Tiesto"]

lists.append(rap)
lists.append(rock)
lists.append(djs)

print(lists)

>> [['Kanye West', 'Jay Z', 'Eminem', 'Nas'],
['Bob Dylan', 'The Beatles', 'Led Zeppelin'],
['Zeds Dead', 'Tiesto']]

In this example, lists has three indexes. Each index is a list: the first index is a list of
rappers, the second index is a list of rockers, and the third index is a list of DJs. You can
access these lists using their corresponding index:

82 Part I Introduction to Programming

1
2
3
4
5
6
7
8

http://tinyurl.com/gu4mudk

Continue from
last example

rap = lists[0]
print(rap)

>> ['Kanye West', 'Jay Z', 'Eminem', 'Nas']

If you append a new item to your rap list, you will see the change when you print your
lists:

1
2
3
4
5
6
7
8
9
10
11

http://tinyurl.com/hdtosm2

Continue from
last example

rap = lists[0]
rap.append("Kendrick Lamar")
print(rap)
print(lists)

>> ['Kanye West', 'Jay Z', 'Eminem', 'Nas', 'Kendrick Lamar']
>> [['Kanye West', 'Jay Z', 'Eminem', 'Nas', 'Kendrick Lamar'],
['Bob Dylan', 'The Beatles', 'Led Zeppelin'], ['Zeds Dead',
'Tiesto']]

You can store a tuple inside a list, a list inside a tuple, and a dictionary inside of a list or a
tuple:

83Chapter 5. Containers

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

http://tinyurl.com/z9dhema

locations = []

la = (34.0522, 188.2437)
chicago = (41.8781, 87.6298)

locations.append(la)
locations.append(chicago)

print(locations)

>> [(34.0522, 188.2437), (41.8781, 87.6298)]

1
2
3
4
5
6
7
8
9
10
11
12
13
14

http://tinyurl.com/ht7gpsd

eights = ["Edgar Allan Poe",
"Charles Dickens"]

nines = ["Hemingway",
"Fitzgerald",
"Orwell"]

authors = (eights, nines)
print(authors)

>> (['Edgar Allan Poe', 'Charles Dickens'], ['Hemingway',
'Fitzgerald', 'Orwell'])

84 Part I Introduction to Programming

1
2
3
4
5
6
7
8
9
10
11
12
13

http://tinyurl.com/h8ck5er

bday = {"Hemingway":
"7.21.1899",
"Fitzgerald":
"9.24.1896"}

my_list = [bday]
print(my_list)
my_tuple = (bday,)
print(my_tuple)

>> [{'Hemingway': '7.21.1899', 'Fitzgerald': '9.24.1896'}]
>> ({'Hemingway': '7.21.1899', 'Fitzgerald': '9.24.1896'},)

A list, tuple, or dictionary can be a value in a dictionary:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

http://tinyurl.com/zqupwx4

ny = {"location":
(40.7128,
74.0059),

"celebs":
["W. Allen",
"Jay Z",
"K. Bacon"],

"facts":
{"state":
"NY",
"country":
"America"}

}

In this example, your dictionary, ny, has three keys: "location", "celebs", and
"facts". The first key's value is a tuple because geographic coordinates never change.

85Chapter 5. Containers

The second key's value is a list of celebrities that live in New York, and it is a list because this
could change. The third key's value is a dictionary because key-value pairs are the best way
to present facts about New York.

Vocabulary
Method: Functions closely associated with a given type of data.
List: A container that stores objects in a specific order.
Iterable: An object is iterable when you can access each item using a loop.
Iterables: Objects that are iterable like strings, lists, and tuples.
Index: A number representing a position in an iterable.
Mutable: When a container is mutable the contents of the container can change.
Immutable: When a container is immutable the contents of the container cannot change.
Dictionary: A built-in container for storing objects used to map one object—called a key
—to another object—called the value.
Key: A value used to look up a value in a dictionary.
Value: A value mapped to a key in a dictionary.
Mapping: Linking one object to another.
Key-value pair: A key mapped to a value in a dictionary.

Challenges
1. Create a list of your favorite musicians.
2. Create a list of tuples, with each tuple containing the longitude and latitude of somewhere
you've lived or visited.
3. Create a dictionary that contains different attributes about you: height, favorite color,
favorite author, etc.
4. Write a program that lets the user ask your height, favorite color, or favorite author, and
returns the result from the dictionary you created in the previous challenge.
5. Create a dictionary mapping your favorite musicians to a list of your favorite songs by
them.
6. Lists, tuples, and dictionaries are just a few of the containers built into Python. Research
Python sets (a type of container). When would you use a set?

Solutions: http://tinyurl.com/z54w9cb.

86

87

Chapter 6. String Manipulation
"In theory, there is no difference between theory and practice. But, in practice, there is."
— Jan L. A. van de Snepscheut

Python has built-in functionality for manipulating strings, such as splitting a string into two
parts at a given character or changing a string's case. For example, if you have a string IN
ALL CAPS, and you want it to be all lowercase, you can change its case using Python. In this
chapter, you will learn more about strings and go over some of Python's most useful tools for
manipulating them.

Triple Strings
If a string spans more than one line, you have to put it in triple quotes:

1
2
3
4
5
6
7

http://tinyurl.com/h59ygda

""" line one
line two
line three

"""

If you try to define a string that spans more than one line with single or double quotes, you
will get a syntax error.

Indexes
Strings, like lists and tuples, are iterable. You can look up each character in a string with an
index. Like other iterables, the first character in a string is at index 0, and each subsequent
index is incremented by 1:

88 Part I Introduction to Programming

1
2
3
4
5
6
7
8
9

http://tinyurl.com/zqqc2jw

author = "Kafka"
author[0]
author[1]
author[2]
author[3]
author[4]

>> 'K'
>> 'a'
>> 'f'
>> 'k'
>> 'a'

In this example, you used the indexes 0, 1, 2, 3, and 4 to look up each of the characters
in the string "Kafka". If you try to look up a character past the last index in your string,
Python raises an exception:

1
2
3
4
5

http://tinyurl.com/zk52tef

author = "Kafka"
author[5]

>> IndexError: string index out of range

Python also allows you to look up each item in a list with a negative index: an index (that
must be a negative number) you can use to look up items in an iterable from right to left,
instead of left to right. You can use the negative index -1 to look up the last item in an
iterable:

1
2
3
4
5

http://tinyurl.com/hyju2t5

author = "Kafka"
author[-1]

>> a

89Chapter 6. String Manipulation

The negative index -2 looks up the second to last item, the negative index -3 looks up the
item third to last, and so on:

1
2
3
4
5
6

http://tinyurl.com/jtpx7sr

author = "Kafka"
author[-2]
author[-3]

>> k
>> f

Strings are Immutable
Strings, like tuples, are immutable. You cannot change the characters in a string. If you want
to change the characters in a string, you have to create a new string:

1
2
3
4
5
6

http://tinyurl.com/hsr83lv

ff = "F. Fitzgerald"
ff = "F. Scott Fitzgerald"
ff

>> 'F. Scott Fitzgerald'

Python has several methods for creating new strings from existing strings, which you will
learn to use in this chapter.

Concatenation
You can add two (or more) strings together using the addition operator. The result is a string
made up of the characters from the first string, followed by the characters from the next
string(s). Adding strings together is called concatenation:

1
2
3
4

http://tinyurl.com/h4z5mlg

"cat" + "in" + "hat"

>> 'catinhat'

90 Part I Introduction to Programming

1
2
3
4

http://tinyurl.com/gsrajle

"cat " + " in" + " the" + " hat"

>> 'cat in the hat'

String Multiplication
You can multiply a string by a number with the multiplication operator:

1
2
3
4

http://tinyurl.com/zvm9gng

"Sawyer" * 3

>> SawyerSawyerSawyer

Change Case
You can change every character in a string to uppercase by calling the upper method on it:

1
2
3
4

http://tinyurl.com/hhancz6

"We hold these truths...".upper()

>> 'WE HOLD THESE TRUTHS...'

Similarly, you can change every letter in a string to lowercase by calling the lower method
on it:

1
2
3
4

http://tinyurl.com/zkz48u5

"SO IT GOES.".lower()

>> 'so it goes.'

91Chapter 6. String Manipulation

You can capitalize the first letter of a sentence by calling the capitalize method on a
string:

1
2
3
4

http://tinyurl.com/jp5hexn

"four score and...".capitalize()

>> 'Four score and...'

Format
You can create a new string using the format method, which looks for occurrences of curly
brackets {} in the string, and replaces them with the parameters you pass in:

1
2
3
4

http://tinyurl.com/juvguy8

"William {}".format("Faulkner")

>> 'William Faulkner'

You can also pass in a variable as a parameter:

1
2
3
4
5

http://tinyurl.com/zcpt9se

last = "Faulkner"
"William {}".format(last)

>> 'William Faulkner'

You are not limited to using curly brackets once you can use them in your string as often as
you'd like:

92 Part I Introduction to Programming

1
2
3
4
5
6
7
8

http://tinyurl.com/z6t6d8n

author = "William Faulkner"
year_born = "1897"

"{} was born in {}.".format(author, year_born)

>> 'William Faulkner was born in 1897.'

The format method is useful if you are creating a string from user input:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

http://tinyurl.com/gnrdsj9

n1 = input("Enter a noun:")
v = input("Enter a verb:")
adj = input("Enter an adj:")
n2 = input("Enter a noun:")

r = """The {} {} the {} {}
""".format(n1,

v,
adj,
n2)

print(r)

>> Enter a noun:

Your program asks the user to enter two nouns, a verb, and an adjective, then uses the
format method to create a new string with the input and prints it.

Split
Strings have a method called split, which you can use to separate one string into two or
more strings. You pass the split method a string as a parameter, and it uses that string to
divide the original string into multiple strings. For example, you can separate the string "I
jumped over the puddle. It was 12 feet!" into two different strings by
passing the split method a period as a parameter:

93Chapter 6. String Manipulation

1
2
3
4

http://tinyurl.com/he8u28o

"Hello.Yes!".split(".")

>> ['Hello', ' Yes!']

The result is a list with two items in it: a string made up of all the characters before the
period, and a string made up of all the characters after the period.

Join
The join method lets you add new characters between every character in a string:

1
2
3
4
5
6

http://tinyurl.com/h2pjkso

first_three = "abc"
result = "+".join(first_three)
result

>> 'a+b+c'

You can turn a list of strings into a single string by calling the join method on an empty
string, and passing in the list as a parameter:

1
2
3
4
5
6
7
8
9
10
11
12

http://tinyurl.com/z49e3up

words = ["The",
"fox",
"jumped",
"over",
"the",
"fence",
"."]

one = "".join(words)
one

>> Thefoxjumpedoverthefence.

94 Part I Introduction to Programming

You can create a string with each word separated by a space by calling the join method on
a string with a space in it:

1
2
3
4
5
6
7
8
9
10
11
12

http://tinyurl.com/h4qq5oy

words = ["The",
"fox",
"jumped",
"over",
"the",
"fence",
"."]

one = " ".join(words)
one

>> The fox jumped over the fence .

Strip Space
You can use the strip method to remove leading and trailing whitespace from a string:

1
2
3
4
5
6

http://tinyurl.com/jfndhgx

s = " The 		 "
s = s.strip()
s

>> 'The'

Replace
The replace method replaces every occurrence of a string with another string. The first
parameter is the string to replace, and the second parameter is the string to replace the
occurrences with:

95Chapter 6. String Manipulation

1
2
3
4
5
6

http://tinyurl.com/zha4uwo

equ = "All animals are equal."
equ = equ.replace("a", "@")
print(equ)

>> All @nim@ls @re equ@l.

Find an Index
You can get the index of the first occurrence of a character in a string with the index
method. Pass in the character you are looking for as a parameter, and the index method
returns the index of the first occurrence of that character in the string:

1
2
3
4

http://tinyurl.com/hzc6asc

"animals".index("m")

>> 3

Python raises an exception if the index method does not find a match:

1
2
3
4

http://tinyurl.com/jmtc984

"animals".index("z")

>> ValueError: substring not found

If you are not sure if you will find a match, you can use exception handling:

1
2
3
4
5
6
7

http://tinyurl.com/zl6q4fd

try:
"animals".index("z")

except:
print("Not found.")

96 Part I Introduction to Programming

>> Not found.

In
The in keyword checks if a string is in another string, and returns either True or False:

1
2
3
4

http://tinyurl.com/hsnygwz

"Cat" in "Cat in the hat."

>> True

1
2
3
4

http://tinyurl.com/z9b3e97

"Bat" in "Cat in the hat."

>> False

Put the keyword not in front of the in to check if one string is not in another string:

1
2
3

http://tinyurl.com/jz8sygd

"Potter" not in "Harry"

>> True

Escaping Strings
If you use quotes inside a string, you will get a syntax error:

1
2
3
4
5
6
7

http://tinyurl.com/zj6hc4r

this code does not work.

"She said "Surely.""

>> SyntaxError: invalid syntax

97Chapter 6. String Manipulation

You can fix this error by prefacing the quotes with backslashes:

1
2
3
4

http://tinyurl.com/jdsrr7e

"She said \"Surely.\""

>> 'She said "Surely."'

1
2
3
4

http://tinyurl.com/zr7o7d7

'She said \"Surely.\"'

>> 'She said "Surely."'

Escaping a string means putting a symbol in front of a character that normally has a special
meaning in Python (in this case, a quote), that lets Python know that, in this instance, the
quote is meant to represent a character, and not the special meaning. Python uses a backslash
for escaping.

You do not need to escape single quotes inside of a string with double quotes:

1
2
3
4

http://tinyurl.com/hoef63o

"She said 'Surely.'"

>> "She said 'Surely.'"

You can also put double quotes inside of single quotes, which is simpler than escaping the
double quotes:

1
2
3
4

http://tinyurl.com/zkgfawo

'She said "Surely."'

>> 'She said "Surely."'

98 Part I Introduction to Programming

Newline
Putting \n inside a string represents a newline:

1
2
3
4

http://tinyurl.com/zyrhaeg

print("line1\nline2\nline3")

>> line1
>> line2
>> line3

Slicing
Slicing is a way to return a new iterable from a subset of the items in another iterable. The
syntax for slicing is [iterable][[start_index:end_index]]. The start index is
the index to start slicing from, and the end index is the index to stop slicing at.

Here is how to slice a list:

1
2
3
4
5
6
7
8
9

http://tinyurl.com/h2rqj2a

fict = ["Tolstoy",
"Camus",
"Orwell",
"Huxley",
"Austin"]

fict[0:3]

>> ['Tolstoy', 'Camus', 'Orwell']

With slicing, the start index includes the item at that index, but the end index only includes
the item before the end index. Because of this, if you want to slice from "Tolstoy"
(index 0) to "Orwell" (index 2), you need to slice from index 0 to index 3.

Here is an example of slicing a string:

99Chapter 6. String Manipulation

1
2
3
4
5
6
7
8

http://tinyurl.com/hug9euj

ivan = "In place of death there was light."

ivan[0:17]
ivan[17:33]

>> 'In place of death'
>> ' there was light.'

If your start index is 0, you can leave the start index empty:

1
2
3
4
5
6
7

http://tinyurl.com/judcpx4

ivan = "In place of death there was light."

ivan[:17]

>> 'In place of death'

If your end index is the index of the last item in the iterable, you can leave the end index
empty:

1
2
3
4
5
6
7

http://tinyurl.com/zqoscn4

ivan = "In place of death there was light."

ivan[17:]

>> ' there was light.'

Leaving both the start and end index empty returns the original iterable:

100 Part I Introduction to Programming

1
2
3
4
5
6
7

http://tinyurl.com/zqvuqoc

ivan = """In place of death there was light."""

ivan[:]

>> "In place of death there was light."

Vocabulary
Negative index: An index (that must be a negative number) you can use to look up items in
an iterable from right to left, instead of left to right.
Escaping: Putting a symbol in front of a character that normally has a special meaning in
Python, which lets Python know that, in this instance, the character is meant to represent a
character, and not the special meaning.
Slicing: A way to return a new iterable from a subset of the items in another iterable.
Start index: The index to start slicing from.
End index: The index to stop slicing at.

Challenges
1. Print every character in the string "Camus".
2. Write a program that collects two strings from a user, inserts them into the string
"Yesterday I wrote a [response_one]. I sent it to [response_
two]!" and prints a new string.
3. Use a method to make the string "aldous Huxley was born in 1894."
grammatically correct by capitalizing the first letter in the sentence.
4. Take the string "Where now? Who now? When now?" and call a method that
returns a list that looks like: ["Where now?", "Who now?", "When now?"].
5. Take the list ["The", "fox", "jumped", "over", "the", "fence",
"."] and turn it into a grammatically correct string. There should be a space between each
word, but no space between the word fence and the period that follows it. (Don't forget, you
learned a method that turns a list of strings into a single string.)
6. Replace every instance of "s" in "A screaming comes across the sky." with
a dollar sign.
7. Use a method to find the first index of the character "m" in the string "Hemingway".
8. Find dialogue in your favorite book (containing quotes) and turn it into a string.

101Chapter 6. String Manipulation

9. Create the string "three three three" using concatenation, and then again using
multiplication.
10. Slice the string "It was a bright cold day in April, and the clocks
were striking thirteen." to only include the characters before the comma.

Solutions: http://tinyurl.com/hapm4dx.

102

103

Chapter 7. Loops
"Eighty percent of success is showing up."
— Woody Allen

The second program I introduced in this book printed Hello, World! a hundred times.
It accomplished this using a loop: a piece of code that continually executes instructions until
a condition defined in the code is satisfied. In this chapter, you will learn about loops and how
to use them.

For-Loops
In this section, you will learn how to use a for-loop: a loop used to iterate through an
iterable. This process is called iterating. You can use a for-loop to define instructions
that execute once for every item in an iterable, and you can access and manipulate each item
in the iterable from within the instructions you defined. For example, you could use a for-
loop to iterate through a list of strings, and use the upper method to print each string with
all of its characters capitalized.

You can define a for-loop using the syntax for [variable_name] in
[iterable_name]: [instructions] where [variable_name] is a variable name
of your choosing assigned to the value of each item in the iterable, and [instructions]
is the code to be executed each time through the loop. Here is an example using a for-
loop to iterate through the characters of a string:

1
2
3
4
5
6

http://tinyurl.com/jya6kpm

name = "Ted"
for character in name:

print(character)

>> T
>> e
>> d

Each time around the loop, the variable character gets assigned to an item in the iterable
name. The first time around the loop, T prints because the variable character is assigned
the value of the first item in the iterable name. The second time around the loop, e prints
because the variable character is assigned the value of the second item in the iterable

104 Part I Introduction to Programming

name. This process continues until every item in the iterable has been assigned to the variable
character.

Here is an example using a for-loop to iterate through the items in a list:

1
2
3
4
5
6
7
8

http://tinyurl.com/zeftpq8

shows = ["GOT",
"Narcos",
"Vice"]

for show in shows:
print(show)

>> GOT
>> Narcos
>> Vice

An example using a for-loop to iterate through the items in a tuple:

1
2
3
4
5
6
7
8

http://tinyurl.com/gpr5a6e

coms = ("A. Development",
"Friends",
"Always Sunny")

for show in coms:
print(show)

>> A. Development
>> Friends
>> Always Sunny

And an example using a for-loop to iterate through the keys in a dictionary:

105Chapter 7. Loops

1
2
3
4
5
6
7
8
9
10
11
12
13
14

http://tinyurl.com/jk7do9b

people = {"G. Bluth II":
"A. Development",
"Barney":
"HIMYM",
"Dennis":
"Always Sunny"
}

for character in people:
print(character)

>> Dennis
>> Barney
>> G. Bluth II

You can use for-loops to change the items in a mutable iterable, like a list:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

http://tinyurl.com/j8wvp8c

tv = ["GOT",
"Narcos",
"Vice"]

i = 0
for show in tv:

new = tv[i]
new = new.upper()
tv[i] = new
i += 1

print(tv)

>> ['GOT, 'NARCOS', 'VICE']

In this example, you used a for-loop to iterate through the list tv. You keep track of the
current item in the list using an index variable: a variable that holds an integer representing

106 Part I Introduction to Programming

an index in an iterable. The index variable i starts at 0, and is incremented each time around
the loop. You use the index variable to get the current item from the list, which you then store
in the variable new. Next, you call the upper method on new, save the result, and use your
index variable to replace the current item in the list with it. Finally, you increment i so you
can look up the next item in the list the next time around the loop.

Because accessing each item and its index in an iterable is so common; Python has another
syntax you can use for this:

1
2
3
4
5
6
7
8
9
10
11
12

http://tinyurl.com/z45g63j

tv = ["GOT", "Narcos",
"Vice"]

for i, show in enumerate(tv):
new = tv[i]
new = new.upper()
tv[i] = new

print(tv)

>> ['GOT', 'NARCOS', 'VICE']

Instead of iterating through tv, you passed tv to enumerate and iterated through the
result, which allowed you to add a new variable i that keeps track of the current index.

You can use for-loops to move data between mutable iterables. For example, you can use
two for-loops to take all the strings from two different lists, capitalize each character in
them, and put them into a new list:

107Chapter 7. Loops

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22

http://tinyurl.com/zcvgklh

tv = ["GOT", "Narcos",
"Vice"]

coms = ["Arrested Development",
"friends",
"Always Sunny"]

all_shows = []

for show in tv:
show = show.upper()
all_shows.append(show)

for show in coms:
show = show.upper()
all_shows.append(show)

print(all_shows)

>> ['GOT', 'NARCOS', 'VICE', 'ARRESTED DEVELOPMENT',
'FRIENDS', 'ALWAYS SUNNY']

In this example, there are three lists: tv, coms, and all_shows. In the first loop, you
iterate through all the items in the list tv, use the upper method to capitalize each item in
it, and use the append method to add each item to the list all_shows. In the second loop,
you do the same thing with the coms list. When you print the list all_shows, it contains
all of the items from both lists, with every item capitalized.

Range
You can use the built-in range function to create a sequence of integers, and use a for-
loop to iterate through them. The range function takes two parameters: a number where
the sequence starts and a number where the sequence stops. The sequence of integers
returned by the range function includes the first parameter (the number to start at), but
not the second parameter (the number to stop at). Here is an example of using the range
function to create a sequence of numbers, and iterate through them:

108 Part I Introduction to Programming

1
2
3
4
5

http://tinyurl.com/hh5t8rw

for i in range(1, 11):
print(i)

>> 1
…
>> 9
>> 10

In this example, you used a for-loop to print each number in the iterable returned by
the range function. Programmers often name the variable used to iterate through a list of
integers i.

While-Loops
In this section, you will learn how to use a while-loop: a loop that executes code
as long as an expression evaluates to True. The syntax for a while-loop is while
[expression]: [code_to_execute], where [expression] represents the
expression that determines whether or not the loop will continue and [code_to_
execute] represents the code the loop should execute as long as it does:

1
2
3
4
5
6
7
8

http://tinyurl.com/j2gwlcy

x = 10
while x > 0:

print('{}'.format(x))
x -= 1

print("Happy New Year!")

>> 10
>> 9
>> 8
>> 7
>> 6
>> 5
>> 4
>> 3
>> 2

109Chapter 7. Loops

>> 1
>> Happy New Year!

Your while-loop executes its code as long as the expression you defined in its header, x
> 0, evaluates to True. The first time around the loop x is 10, and the expression x > 0
evaluates to True. Your while-loop code prints the value of x, then decrements x by
1. x now equals 9. The next time around the loop x is printed again, and gets decremented
to 8. This process continues until x is decremented to 0, at which point x > 0 evaluates to
False, and your loop ends. Python then executes the next line of code after your loop, and
prints Happy New Year!

If you define a while-loop with an expression that always evaluates to True, your loop
will run forever. A loop that never ends is called an infinite loop. Here is an example of an
infinite loop (be prepared to press control-c on your keyboard in the Python shell to stop the
infinite loop from running):

1
2
3
4
5

http://tinyurl.com/hcwvfk8

while True:
print("Hello, World!")

>> Hello, World!
…

Because a while-loop runs as long as the expression defined in its header evaluates to
True—and True always evaluates to True—this loop will run forever.

Break
You can use a break-statement a statement with the keyword break to terminate a
loop. The following loop will run one hundred times:

1
2
3
4
5

http://tinyurl.com/zrdh88c

for i in range(0, 100):
print(i)

>> 0
>> 1
…

110 Part I Introduction to Programming

If you add a break-statement, the loop only runs once:

1
2
3
4
5
6

http://tinyurl.com/zhxf3uk

for i in range(0, 100):
print
break

>> 0

As soon as Python hits the break-statement, the loop ends. You can use a while-
loop and the break keyword to write a program that keeps asking the user for input until
they type q to quit:

1
2
3
4
5
6
7
8
9
10
11
12
13

http://tinyurl.com/jmak8tr

qs = ["What is your name?",
"What is your fav. color?",
"What is your quest?"]

n = 0
while True:

print("Type q to quit")
a = input(qs[n])
if a == "q":

break
n = (n + 1) % 3

>> Type q to quit
>> What is your name?

Each time through the loop, your program asks the user one of the questions in your qs
list.

n is an index variable. Each time around the loop, you assign n to the evaluation of the
expression (n + 1) % 3, which enables you to cycle indefinitely through every question
in your qs list. The first time around the loop, n starts at 0. Next, n is assigned the value of
the expression (0 + 1) % 3, which evaluates to 1. Then, n is assigned to the value of (1
+ 1) % 3, which evaluates to 2, because whenever the first number in an expression using

111Chapter 7. Loops

modulo is smaller than the second, the answer is the first number. Finally, n is assigned the
value of (2 + 1) % 3, which evaluates back to 0.

Continue
You can use a continue-statement—a statement with the keyword continue — to
stop the current iteration of a loop and move on to the next iteration of it. Say you want to
print all the numbers from 1 to 5, except the number 3. You can achieve this using a for-
loop and a continue-statement:

1
2
3
4
5
6
7

http://tinyurl.com/hflun4p

for i in range(1, 6):
if i == 3:

continue
print(i)

>> 1
>> 2
>> 4
>> 5

In this loop, when i equals 3, your continue-statement executes, and instead of
causing your loop to exit completely—like the break keyword would—the loop persists.
The loop moves on to the next iteration, skipping any code that would have executed. When
i equals 3, and Python executes the continue-statement, Python does not print the
number 3.

You can achieve the same result using a while-loop and a continue-statement:

112 Part I Introduction to Programming

1
2
3
4
5
6
7
8
9
10

http://tinyurl.com/gp7forl

i = 1
while i <= 5:

if i == 3:
i += 1
continue

print(i)
i += 1

>> 1
>> 2
>> 4
>> 5

Nested Loops
You can combine loops in various ways. For example, you can have one loop inside of a loop
or a loop inside a loop inside a loop. There is no limit to the number of loops you can have
inside of other loops, although you want to limit this. When a loop is inside another loop, the
second loop is nested in the first loop. In this situation, the loop with another loop inside it is
called an outer loop, and the nested loop is called an inner loop. When you have a nested
loop, the inner loop iterates through its iterable once for each time around the outer loop:

1
2
3
4
5
6
7

http://tinyurl.com/gqjxjtq

for i in range(1, 3):
print(i)
for letter in ["a", "b", "c"]:

print(letter)

>> 1
>> a
>> b
>> c
>> 2
>> a
>> b
>> c

113Chapter 7. Loops

The nested for-loop will iterate through the list ["a", "b", "c"] however many
times the outer loop runs—in this case, twice. If you changed your outer loop to run three
times, the inner loop would iterate through its list three times as well.

You can use two for-loops to add each number in a list to all the numbers in another
list:

1
2
3
4
5
6
7
8
9
10
11
12

http://tinyurl.com/z7duawp

list1 = [1, 2, 3, 4]
list2 = [5, 6, 7, 8]
added = []
for i in list1:

for j in list2:
added.append(i + j)

print(added)

>> [6, 7, 8, 9, 7, 8, 9, 10, 8, 9, 10, 11, 9, 10, 11, 12]

The first loop iterates through every integer in list1. For each item in it, the second loop
iterates through each integer in its own iterable, adds it to the integer from list1 and
appends the result to the list added. I named the variable j in the second for-loop,
because I already used the variable name i in the first loop.

You can nest a for-loop inside a while-loop, and vice versa:

1
2
3
4
5
6

http://tinyurl.com/hnprmmv

while input('y or n?') != 'n':
for i in range(1, 6):

print(i)

>> y or n?y
1
2
3

114 Part I Introduction to Programming

4
5
y or n?y
1
2
3
4
5
y or n?n
>>>

This program will print the numbers 1–5 until the user enters n.

Vocabulary
Loop: A piece of code that continually executes instructions until a condition defined in the
code is satisfied.
Iterating: Using a loop to access each item in an iterable.
For-loop: A loop used to iterate through an iterable, like a string, list, tuple, or dictionary.
Index variable: A variable that holds an integer representing an index in an iterable.
While-loop: A loop that executes code as long as an expression evaluates to True.
Infinite loop: A loop that never ends.
Break-statement: A statement with the keyword break in it used to terminate a loop.
Continue-statement: A statement with the keyword continue used to stop the current
iteration of a loop and move on to the next iteration of it.
Outer loop: A loop with a nested loop inside it.
Inner loop: A loop nested in another loop.

Challenges
1. Print each item in the following list: ["The Walking Dead", "Entourage",
"The Sopranos", "The Vampire Diaries"].
2. Print all the numbers from 25 to 50.
3. Print each item in the list from the first challenge and their indexes.
4. Write a program with an infinite loop (with the option to type q to quit) and a list of
numbers. Each time through the loop ask the user to guess a number on the list and tell them
whether or not they guessed correctly.
5. Multiply all the numbers in the list [8, 19, 148, 4] with all the numbers in the list
[9, 1, 33, 83], and append each result to a third list.

115Chapter 7. Loops

Solutions: http://tinyurl.com/z2m2ll5.

116

117

Chapter 8. Modules
"Perseverance and spirit have done wonders in all ages."
—George Washington

Imagine you wrote a program with 10,000 lines of code. If you put all of the code in one file,
it would be difficult to navigate. Every time there was an error or exception, you would have
to scroll through 10,000 lines of code to find the one line causing the problem. Programmers
solve this issue by dividing large programs into multiple pieces, called modules another
name for a Python file with code in it containing each piece. Python allows you to use code
from one module in another module. Python also has built-in modules, modules that
are built into Python and contain important functionality. In this chapter, you learn about
modules and how to use them.

Importing Built-In Modules
To use a module, you must first import it: which means writing code, so Python knows
where to look for it. You can import a module with the syntax import [module_name].
Replace [module_name] with the name of the module you are importing. Once you've
imported a module, you can use variables and functions from it.

Python has many different modules, including a math module containing math-related
functionality. You can find a list of all of Python's built-in modules at https://docs.python.
org/3/py-modindex.html. Here is how to import Python's math module:

1
2
3
4

http://tinyurl.com/h3ds93u

import math

Once you've imported a module, you can use code from it with the syntax [module_name].
[code], replacing [module_name] with the name of a module you already imported,
and [code] with the name of the function or variable you want to use from it. The following
is an example of importing and using the pow function from the math module, which takes
two parameters, x and y, and raises x by y:

118 Part I Introduction to Programming

1
2
3
4
5
6
7

http://tinyurl.com/hyjo59s

import math

math.pow(2, 3)

>> 8.0

First, import the math module at the top of your file. You should import all of your modules
at the top of your file to make it easy to see which ones you are using in your program. Next,
call the pow function with math.pow(2, 3). The function returns 8.0 as the result.

The random module is another built-in module. You can use a function from it called
randint to generate a random integer: you pass it two integers, and it returns a random
integer between them:

1
2
3
4
5
6
7
8
9
10
11

http://tinyurl.com/hr3fppn

The output might not be 52
when you run it—it's random!

import random

random.randint(0,100)

>> 52

You can use the built-in statistics module to calculate the mean, median, and mode in
an iterable of numbers:

119Chapter 8. Modules

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

http://tinyurl.com/jrnznoy

import statistics

mean
nums = [1, 5, 33, 12, 46, 33, 2]
statistics.mean(nums)

median
statistics.median(nums)

mode
statistics.mode(nums)

>> 18.857142857142858
>> 12
>> 33

Use the built-in keyword module to check if a string is a Python keyword:

1
2
3
4
5
6
7
8

http://tinyurl.com/zjphfho

import keyword

keyword.iskeyword("for")
keyword.iskeyword("football")

>> True
>> False

Importing Other Modules
In this section, you are going to create a module, import it in another module, and use the
code from it. First, create a new folder on your computer called tstp. Inside that folder,
create a file called hello.py. Add the following code to hello.py and save the file:

120 Part I Introduction to Programming

1
2
3
4
5

http://tinyurl.com/z5v9hk3

def print_hello():
print("Hello")

Inside your tstp folder, create another Python file called project.py. Add the following
code to project.py, and save the file:

1
2
3
4
5
6
7

http://tinyurl.com/j4xv728

import hello

hello.print_hello()

>> Hello

In this example, you used the import keyword to use code from your first module in your
second module.

When you import a module, all of the code in it executes. Create a module named
module1.py with the following code:

1
2
3
4
5

http://tinyurl.com/zgyddhp

code in module1
print("Hello!")

>> Hello!

The code from module1.py will run when you import it in another module named
module2.py:

1
2
3
4
5

http://tinyurl.com/jamt9dy

code in module2
import hello

121Chapter 8. Modules

>> Hello!

This behavior can be inconvenient. For instance, you might have test code in your module
that you do not want to run when you import it. You can solve this problem by putting all
of the code in your module within the statement if __name__ == "__main__". For
example, you could change the code in module1.py from the previous example to the
following:

1
2
3
4
5
6

http://tinyurl.com/j2xdzc7

code in module1
if __name__ == "__main__":

print("Hello!")

>> Hello!

When you run this program, the output is still the same. But when you import it from
module2.py, the code from module1.p no longer runs, and Hello! does not print:

1
2
3
4
5

http://tinyurl.com/jjccxds

code in module2
import hello

Vocabulary
Module: Another name for a Python file with code in it.
Built-in module: Modules that come with Python that contain important functionality.
Import: Writing code that lets Python know where to look for a module you plan on using.

Challenges
1. Call a different function from the statistics module.
2. Create a module named cubed with a function that takes a number as a parameter, and
returns the number cubed. Import and call the function from another module.

Solutions: http://tinyurl.com/hlnsdot.

122

123

Chapter 9. Files
"Self-education is, I firmly believe, the only kind of e ducation there is."
—Isaac Asimov

You can use Python to work with files. For example, you can use Python to read data from
a file and to write data to a file. Reading data from a file means accessing the file's data.
Writing data to a file means adding or changing data in the file. In this chapter, you will
learn the basics of working with files.

Writing to Files
The first step to working with a file is to open it with Python's built-in open function. The
open function takes two parameters: a string representing the path to the file to open and a
string representing the mode to open the file in.

The path to a file, or file path, represents the location on your computer where a file resides.
For example, /Users/bob/st.txt is the file path to a file called st.txt. Each word
separated by a slash is the name of a folder. Together, it represents the location of a file. If a
file path only has the name of the file (with no folders separated by slashes), Python will look
for it in whatever folder you are running your program from. You should not write a file path
yourself. Unix-like operating systems and Windows use a different type of slash in their file
paths. To avoid problems with your program working across different operating systems, you
should always create file paths using Python's builtin os module. The path function in
it takes each folder in a file path as a parameter and builds the file path for you:

1
2
3
4
5
6
7

http://tinyurl.com/hkqfkar

import os
os.path.join("Users",

"bob",
"st.txt")

>> 'Users/bob/st.txt'

Creating file paths with the path function ensures they will work on any operating system.
Working with file paths can still be tricky. Visit https://theselftaughtprogrammer.io/filepaths
if you are having trouble.

124 Part I Introduction to Programming

The mode you pass to the open function determines the actions you will be able to perform
on the file you open. Here are a few of the modes you can open a file in:

"r" opens a file for reading only.

"w" opens a file for writing only. Overwrites the file if the file exists. If the file does not exist,
creates a new file for writing.

"w+" opens a file for reading and writing. Overwrites the existing file if the file exists. If the
file does not exist, creates a new file for reading and writing.5

The open function returns an object, called a file object, which you can use to read and/
or write to your file. When you use the mode "w", the open function creates a new file, if it
doesn't already exist, in the directory your program is running in.

You can then use the write method on the file object to write to the file, and the close
method to close it. If you open a file using the open method, you must close it with the
close method. If you use the open method on multiple files and forget to close them, it
can cause problems in your program. Here is an example of opening a file, writing to it, and
closing it:

1
2
3
4
5
6

http://tinyurl.com/zfgczj5

st = open("st.txt", "w")
st.write("Hi from Python!")
st.close()

In this example, you use the open function to open the file and save the file object it returns
in the variable st. Then you call the write method on st, which accepts a string as a
parameter and writes it to the new file Python created. Finally, you close your file by calling
the close method on the file object.

Automatically Closing Files
There is a second preferred syntax to open files that prevents you from having to remember
to close them. To use this syntax, you put all of your code that needs access to the file object
inside a with-statement: a compound statement with an action that automatically
occurs when Python leaves it.

125Chapter 9. Files

The syntax for opening a file using a with-statement is with open([file_
path],[mode]) as [variable_name]: [your_code]. [file_path]
represents the filepath, [mode] represents the mode to open the file in, [variable_
name] represents the name of the variable the file object is assigned to, and [your_code]
represents the code that has access to the variable the file object is assigned to.

When you use this syntax to open a file, it automatically closes after the last suite in [your_
code] executes. Here is the example from the previous section using this new syntax to
open, write to, and close a file:

1
2
3
4
5

http://tinyurl.com/jt9guu2

with open("st.txt", "w") as f:
f.write("Hi from Python!")

As long as you are inside the with-statement, you can access the file object—in this case,
you named it f. As soon as Python finishes running all the code in the with-statement,
Python closes the file for you.

Reading from Files
If you want to read the file, you pass in "r" as the second parameter to open. Then you
call the read method on your file object, which returns an iterable containing each line of
the file:

1
2
3
4
5
6
7
8
9
10

http://tinyurl.com/hmuamr7

make sure you've
created the file from
the previous example

with open("st.txt", "r") as f:
print(f.read())

>> Hi from Python!

126 Part I Introduction to Programming

You can only call read on a file once, without closing and reopening it to get its contents,
so you should save the file contents in a variable or container if you need to use them later in
your program. Here is how to save the contents from the file in the previous example in a list:

1
2
3
4
5
6
7
8
9
10
11

http://tinyurl.com/hkzhxdz

my_list = list()

with open("st.txt", "r") as f:
my_list.append(f.read())

print(my_list)

>> ['Hi from Python!']

Now you can access this data later in your program.

CSV Files
Python comes with a built-in module that allows you to work with CSV files. A CSV file
has a .csv extension that separates data using commas (CSV stands for Comma Separated
Values). Programs that manage spreadsheets like Excel often use CSV files. Each piece of
data separated by a comma in a CSV file represents a cell in a spreadsheet, and every line
represents a row. A delimiter is a symbol, like a comma or a vertical bar |, used to separate
data in a CSV file. Here are the contents of a CSV file named self_taught.csv:

one,two,three four,five,six

You could load this file into Excel, and one, two, and three would each get cells in the first row
of the spreadsheet, and four, five, and six would each get cells in the second row.

You can use a with-statement to open a CSV file, but inside the with-statement
you need to use the csv module to convert the file object into a csv object. The csv
module has a method called writer that accepts a file object and a delimiter. The writer
method returns a csv object that has a method called writerow. The writerow method
accepts a list as a parameter, and you can use it to write to a CSV file. Every item in the list
gets written — separated by the delimiter you pass to the writer method — to a row in the

127Chapter 9. Files

CSV file. The writerow method only creates one row, so you have to call it twice to create
two rows:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

http://tinyurl.com/go9wepf

import csv

with open("st.csv", "w", newline='') as f:
w = csv.writer(f,

delimiter=",")
w.writerow(["one",

"two",
"three"])

w.writerow(["four",
"five",
"six"])

This program creates a new file called st.csv, and when you open it in a text editor, it looks
like this:

one,two,three
four,five,six

If you load the file into Excel (or Google Sheets, a free Excel alternative) the commas
disappear; but one, two, and three are cells in row one; and four, five, and six are cells in row
two.

You can also use the csv module to read the contents of a file. To read from a CSV file you
first pass in "r" as the second parameter to the open function to open the file for reading.
Then, inside the with-statement, you call the reader method, passing in the file object
and a comma as the delimiter, which returns an iterable you can use to access each row in
the file.

128 Part I Introduction to Programming

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

http://tinyurl.com/gvcdgxf

make sure you've created
the file from the previous
example

import csv

with open("st.csv", "r") as f:
r = csv.reader(f, delimiter=",")
for row in r:

print(",".join(row))

>> one,two,three
>> four,five,six

In this example, you open st.csv for reading and convert it to a csv object using the
reader method. You then iterate through the csv object using a loop. Each time around
the loop, you call the join method on a comma to add a comma between each piece of
data in the file and print the contents the way they appear in the original file (separated by
commas).

Vocabulary
Reading: Accessing the file's content.
Writing: Adding or changing data in the file.
File path: The location on your computer where a file resides.
With-statement: A compound statement with an action that automatically occurs when
Python leaves it.
File object: An object you can use to read or write to a file.
CSV file: A file with a .csv extension that separates data using commas (CSV stands for
Comma Separated Values). Frequently used in programs that manage spreadsheets, like
Excel.
Delimiter: A symbol, like a comma, used to separate data in a CSV file.

129Chapter 9. Files

Challenges
1. Find a file on your computer and print its contents using Python.
2. Write a program that asks a user a question, and saves their answer to a file.
3. Take the items in this list of lists: [["Top Gun", "Risky Business", "Minority
Report"], ["Titanic", "The Revenant", "Inception"], ["Training
Day", "Man on Fire", "Flight"]] and write them to a CSV file. The data from
each list should be a row in the file, with each item in the list separated by a comma.

Solutions: http://tinyurl.com/hll6t3q.

130

131

Chapter 10. Bringing It All Together
"All I have learned, I learned from books."
―Abraham Lincoln

In this chapter, you are going to combine the concepts you've learned so far and build a text-
based game, the classic Hangman. If you've never played Hangman, here's how it works:

1. Player One picks a secret word and draws a line for each letter in it (you will use an
underscore to represent each line).
2. Player Two tries to guess the word one letter at a time.
3. If Player Two guesses a letter correctly, Player One replaces the corresponding underscore
with the correct letter. In this version of the game, if a letter appears twice in a word, you
have to guess it twice.
OR
If Player Two guesses incorrectly, Player One draws a body part of a hanged stick figure
(starting with the head).
4. If Player Two completes the word before the drawing of the hangman is complete, they
win. If not, they lose.

132 Part I Introduction to Programming

In your program, the computer will be Player One, and the person guessing will be Player
Two. Are you ready to build Hangman?

Hangman
Here is the beginning of your Hangman code:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

http://tinyurl.com/jhrvs94

def hangman(word):
wrong = 0
stages = ["",

"________ ",
"|			 ",
"| | ",
"| 0 ",
"| /|\ ",
"| / \ ",
"| "
]

rletters = list(word)
board = ["__"] * len(word)
win = False
print("Welcome to Hangman")

First, you create a function called hangman to store the game. The function accepts a variable
called word as a parameter; this is the word Player Two has to guess. You use another
variable, wrong, to keep track of how many incorrect letters Player Two has guessed.

The variable stages is a list filled with strings you will use to draw your hangman. When
Python prints each string in the stages list on a new line, a picture of a hangman forms.
The variable rletters is a list containing each character in the variable word that keeps
track of which letters are left to guess.

The variable board is a list of strings used to keep track of the hints you display to Player
Two, e.g., c__t if the word is cat (and Player Two has already correctly guessed c and
t). You use ["__"] * len(word) to populate the board list, with two underscores
for every character in the variable word. For example, if the word is cat, board starts
as ["__", "__", "__"].

133Chapter 10. Bringing It All Together

You also have a win variable that starts as False, to keep track of whether Player Two has
won the game yet. Next, you print Welcome to Hangman.

The next part of your code is a loop that keeps the game going:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

http://tinyurl.com/ztrp5jc
while wrong < len(stages) - 1:

print("\n")
msg = "Guess a letter"
char = input(msg)
if char in rletters:

cind = rletters.index(char)
board[cind] = char
rletters[cind] = '$'

else:
wrong += 1

print((" ".join(board)))
e = wrong + 1
print("\n".join(stages[0: e]))
if "__" not in board:

print("You win!")
print(" ".join(board))
win = True
break

Your loop (and game) continues as long as the variable wrong is less than the
len(stages) - 1. The variable wrong keeps track of the number of wrong letters
Player Two has guessed, so as soon as Player Two guesses more wrong letters than the number
of strings that make up the hangman (the number of strings in the stages list), the game is
over. You have to subtract 1 from the length of the stages list to compensate for the fact that
the stages list starts counting from 0, and wrong starts counting at 1.

Once you are inside your loop, print a blank space to make the game look nice when it prints
in the shell. Then, collect Player Two's guess with the built-in input function and store the
value in the variable guess.

If guess is in rletters (the list that keeps track of the letters in the word that Player Two
hasn't guessed yet), the player guessed correctly. If the player guessed correctly, you need to
update your board list, which you use later in the game to display the letters remaining. If
Player Two guessed c, you would change your board list to ["c", "__", "__"].

134 Part I Introduction to Programming

To do this, you use the index method on your rletters list to get the first index of the
letter Player Two guessed, and use it to replace the underscore in board at the index with
the correctly guessed letter.

There is one problem with this. Because index only returns the first index of the character
you are looking for, your code will not work if the variable word has more than one of the
same character. To get around this, modify rletters by replacing the character that was
correctly guessed with a dollar sign, so the next time around the loop, the index function will
find the next occurrence of the letter (if there is one) and it won't stop at the first occurrence.

If on the other hand, if the player guesses an incorrect letter, you increment wrong by 1.

Next, you print the scoreboard and your hangman using the board and stages lists. The
code that prints the scoreboard is ' '.join(board).

Printing the hangman is trickier. When each of the strings in your stages list prints on a
new line, a complete picture of a hangman prints. You can create the entire hangman by
printing '\n'.join(stages), which adds a new line to each string in the stages list
so that each string in the list prints on a separate line.

To print your hangman at whatever stage the game is at, you slice your stages list. You
start at stage 0, and slice up to the stage you are at (represented by the variable wrong) plus
one. You add one because when you are slicing, the end slice does not get included in the
result. This slice gives you only the strings you need to print the version of the hangman you
are currently at.

Finally, you check if Player Two won the game. If there are no more underscores in the
board list, they guessed all the letters and won the game. If Player Two won, you print
You win! It was: and the word they correctly guessed. You also set the variable win
to True, which breaks you out of your loop.

Once you break out of your loop, if Player Two won, you do nothing—the program is over.
If they lost, the variable win is False. If that is the case, you print the full hangman and
You lose!, followed by the word they couldn't guess:

1
2
3
4

http://tinyurl.com/zqklqxo
if not win:

print("\n".join(stages[0: wrong]))
print("You lose! It was {}.".format(word))

Here is your complete code:

135Chapter 10. Bringing It All Together

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

http://tinyurl.com/h9q2cpc

def hangman(word):
wrong = 0
stages = ["",

"________ ",
"|			 ",
"| | ",
"| 0 ",
"| /|\ ",
"| / \ ",
"| "
]

rletters = list(word)
board = ["__"] * len(word)
win = False
print("Welcome to Hangman")
while wrong < len(stages) - 1:

print("\n")
msg = "Guess a letter"
char = input(msg)
if char in rletters:

cind = rletters.index(char)
board[cind] = char
rletters[cind] = '$'

else:
wrong += 1

print((" ".join(board)))
e = wrong + 1
print("\n".join(stages[0: e]))
if "__" not in board:

print("You win!")
print(" ".join(board))
win = True
break

if not win:
print("\n".join(stages[0: wrong]))
print("You lose! It was {}.".format(word))

hangman("cat")

136 Part I Introduction to Programming

Challenge
1. Modify the game, so a word is selected randomly from a list of words.

Solution: http://tinyurl.com/j7rb8or.

137

Chapter 11. Practice
"Practice doesn't make perfect. Practice makes myelin, and myelin makes perfect."
—Daniel Coyle

If this is your first programming book, I recommend spending time practicing before moving
on to the next section. The following is some resources to explore and advice on what to do
if you are stuck.

Read
1. https://softwareengineering.stackexchange.com/questions/44177/what-is-the-single-
most-effective-thing-you-did-to-improve-your-programming-skil

Other Resources
I've compiled a list of programming resources at https://www.theselftaughtprogrammer.
io/resources.

Getting Help
If you get stuck, I have a few suggestions. First, post your question in the Self- Taught
Programmers Facebook group located at facebook.com/groups/
selftaughtprogrammers. The group is a community of friendly programmers (and aspiring
ones) that can help answer any questions you have.

I also recommend checking out stackoverflow.com, a website where you can post
programming questions and get answers from members of the community.

I created an online course based on this book (plus bonus content) you might find helpful as
well. It is available at udemy.com/course/self-taught-programmer. If you need additional
help, I offer a mentorship program at goselftaught.com.

Learning to rely on other people's help was an important lesson for me. Struggling to
figure things out is a major part of the learning process; but at some point, it becomes
counterproductive. In the past, when I worked on projects, I used to struggle beyond the
point of productivity. If that happens today, I post a question online, if I can't find the answer
there already. Every time I've posted a question online, someone has answered it. To that
end, I can't say enough about how helpful and friendly the programming community is.

138

Part II
Introduction to Object-Oriented
Programming

139

Chapter 12. Programming Paradigms
"There are only two kinds of languages: the ones people complain about and the ones
nobody uses."
—Bjarne Stroustrup

A programming paradigm is a style of programming. There are many different
programming paradigms. To program professionally, you need to learn either
the object-oriented or functional programming paradigms. In this chapter, you will learn
about procedural programming, functional programming, and object-oriented
programming—with a focus on object-oriented programming.

State
One of the fundamental differences between the various programming p aradigms i s the
handling of state. State is the value of a program's variables while it is running. Global
state is the value of a program's global variables while it is running.

Procedural Programming
In Part I, you programmed using the procedural programming paradigm: a
programming style in which you write a sequence of steps moving toward a solution—with
each step changing the program's state. In procedural programming, you write code to "do
this, then that":

1
2
3
4
5
6
7
8

http://tinyurl.com/jv2rrl8

x = 2
y = 4
z = 8
xyz = x + y + z
xyz

>> 14

Each line of code in this example changes the program's state. First, you define x, then y,
then z. Finally, you define the value of xyz.

When you program procedurally, you store data in global variables and manipulate it with
functions:

140 Part II Introduction to Object-Oriented Programming

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

http://tinyurl.com/gldykam

rock = []
country = []

def collect_songs():
song = "Enter a song."
ask = "Type r or c. q to quit"

while True:
genre = input(ask)
if genre == "q":

break

if genre == "r":
rk = input(song)
rock.append(rk)

elif genre =="c":
cy = input(song)
country.append(cy)

else:
print("Invalid.")

print(rock)
print(country)

collect_songs()

>> Type r or c. q to quit:

Procedural programming is fine when building small programs like this, however, because
you store all of your program's state in global variables, you run into problems when your

141Chapter 12. Programming Paradigms

program becomes larger. The problem with relying on global variables is that they cause
unexpected errors. When your program becomes large, you start using global variables in
multiple functions throughout your program, and it becomes impossible to keep track of all
the places a global variable is modified. For example, a function might change the value of
a global variable, and later in the program, a second function might change the same global
variable, because the programmer who wrote the second function forgot the first function
already modified it. This situation frequently occurs and corrupts a program's data.

As your program grows in complexity, the number of global variables in it increases. When
you combine this increase with the growth in the number of functions your program needs to
handle new functionality, which all modify the global variables, your program quickly becomes
impossible to maintain. Furthermore, this approach to programming relies on side effects.
A side effect is changing the state of a global variable. When you program procedurally, you
will often run into unintended side effects such as accidentally incrementing a variable twice.

This problem led to the development of the object-oriented and functional programming
paradigms, and they both take different approaches to address it.

Functional Programming
Functional programming originates from the lambda calculus: the smallest universal
programming language in the world (created by the mathematician Alonzo Church).
Functional programming addresses the problems that arise in procedural programming by
eliminating global state. A functional programmer relies on functions that do not use or
change global state, the only state they use are the parameters you pass to the function. The
result a function returns is usually passed on to another function. A functional programmer
can thus avoid global state by passing it from function to function. Eliminating global state
removes side effects and the problems that come with them.

There is a lot of jargon in functional programming, and Mary Rose Cook cuts through it with
her definition, "Functional code is characterized by one thing: the absence of side effects. It
doesn't rely on data outside the current function, and it doesn't change data that exists outside
the current function."6 She follows her definition with an example of a function that has side
effects:

142 Part II Introduction to Object-Oriented Programming

1
2
3
4
5
6
7
8
9

http://tinyurl.com/gu9jpco

a = 0

def increment():
global a
a += 1

And a function with no side effects:

1
2
3
4
5

http://tinyurl.com/z27k2yl

def increment(a):
return a + 1

The first function has side effects because it relies on data outside of itself, and changes data
outside of the current function—it incremented a global variable. The second function does
not have side effects because it does not rely on or change any data outside of itself.

One advantage of functional programming is that it eliminates an entire category of errors
caused by global state (there is no global state in functional programming). A disadvantage
of functional programming is certain problems are easier to conceptualize with state. For
example, it is simpler to conceptualize designing a user interface with global state than a user
interface without global state. If you want to write a program with a button that toggles a
picture between being shown to the user and being invisible, it is easier to think about how
to create such a button by writing a program with global state. You could create a global
variable that is either True or False that hides or reveals the picture, depending on its
current value. It is harder to conceptualize designing a button like this without global state.

Object-Oriented Programming
The object-oriented programming paradigm also addresses the problems that arise in
procedural programming by eliminating global state, but instead of storing state in functions,
it is stored in objects. In object-oriented programming, classes define a set of objects that
can interact with each other. Classes are a mechanism for the programmer to classify and
group together similar objects. Think of a bag of oranges. Each orange is an object. All
oranges have the same attributes, such as color and weight, but the values of these attributes

143Chapter 12. Programming Paradigms

vary from one orange to the next. You can use a class to model oranges and create orange
objects with different values. For instance, you can define a class that allows you to create an
orange object that is dark orange and weighs 10 oz, and an orange object that is light orange
and weighs 12 oz.

Every object is an instance of a class. If you define a class called Orange, and create
two Orange objects, each one is an instance of the class Orange; they have the same
data type—Orange. You can use the terms object and instance interchangeably. When you
define a class, all of the instances of that class will be similar: They all have the attributes
defined in the class they are an instance of, such as color or weight for a class representing an
orange—but each instance can have different values for these attributes.

In Python, a class is a compound statement with a header and suites. You define a class with
the syntax class [name]: [suites] where [name] is the name of the class and
[suites] are the class' suites you define. By convention, classes in Python always start
with a capital letter, and you write them in camelCase—which means if a class name has
more than one word, the first letters of all the words should be capitalized LikeThis,
instead of separated by an underscore (the convention for function names). A suite in a class
can be a simple statement or a compound statement called a method. Methods are like
functions, but you define them inside of a class, and you can only call them on the object the
class creates (like you did in Part I when you called methods like "hello".upper() on
strings). Method names, like function names, should be all lowercase with words separated
by underscores.

You define methods with the same syntax as functions, with two differences: you must define
a method as a suite in a class, and it has to accept at least one parameter (except in special
cases). By convention, you always name the first parameter of a method self. You have to
define at least one parameter when you create a method, because when you call a method on
an object, Python automatically passes the object that called the method to the method as a
parameter:

1
2
3
4
5
6

http://tinyurl.com/zrmjape

class Orange:
def __init__(self):

print("Created!")

You can use self to define an instance variable: a variable that belongs to an object. If
you create multiple objects, they can all have different instance variable values. You can define

144 Part II Introduction to Object-Oriented Programming

instance variables with the syntax self.[variable_name] = [variable_value].
You normally define instance variables inside of a special method called __init__ (which
stands for initialize) that Python calls when you create an object:

Here is an example of a class that represents an orange:

1
2
3
4
5
6
7
8

http://tinyurl.com/hrf6cus

class Orange:
def __init__(self, w, c):

self.weight = w
self.color = c
print("Created!")

The code in __init__ executes when you create an Orange object (which does not
happen in this example) and creates two instance variables: weight and color. You can
use these variables like regular variables, in any method in your class. When you create an
Orange object, the code in __init__ also prints Created! Any method surrounded by
double underscores, like __init__, is called a magic method: a method Python uses for
special purposes like creating an object.

You can create a new Orange object with the same syntax you use to call a function —
[classname]([parameters]), replacing [classname] with the name of the class
you want to use to create the object and replacing [parameters] with the parameters
__init__ accepts. You do not have to pass in self; Python passes it in automatically.
Creating a new object is called instantiating a class:

1
2
3
4
5
6
7
8
9
10
11
12

http://tinyurl.com/jlc7pvk

class Orange:
def __init__(self, w, c):

self.weight = w
self.color = c
print("Created!")

or1 = Orange(10, "dark orange")
print(or1)

145Chapter 12. Programming Paradigms

>> Created!
>> <__main__.Orange object at 0x101a787b8>

After the class definition, you instantiate the Orange class with the code Orange(10,
"dark orange") and Created! prints. Then, you print the Orange object itself, and
Python tells you it is an Orange object and gives you its location in memory (the location in
memory printed on your computer will not be the same as this example).

Once you've created an object, you can get the value of its instance variables with the syntax
[object_name].[variable_name]:

1
2
3
4
5
6
7
8
9
10
11
12
13

http://tinyurl.com/grwzeo4

class Orange:
def __init__(self, w, c):

self.weight = w
self.color = c
print("Created!")

or1 = Orange(10, "dark orange")
print(or1.weight)
print(or1.color)

>> Created!
>> 10
>> dark orange

You can change the value of an instance variable with the syntax [object_name].
[variable_name] = [new_value]:

146 Part II Introduction to Object-Oriented Programming

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

http://tinyurl.com/jsxgw44

class Orange:
def __init__(self, w, c):

self.weight = w
self.color = c
print("Created!")

or1 = Orange(10, "dark orange")
or1.weight = 100
or1.color = "light orange"

print(or1.weight)
print(or1.color)

>> Created!
>> 100
>> light orange

Although the instance variables color and weight started with the values "dark
orange" and 10, you were able to change their values to "light orange" and 100.

You can use the Orange class to create multiple oranges:

1
2
3
4
5
6
7
8
9
10
11
12
13

http://tinyurl.com/jrmxlmo

class Orange:
def __init__(self, w, c):

self.weight = w
self.color = c
print("Created!")

or1 = Orange(4, "light orange")
or2 = Orange(8, "dark orange")
or3 = Orange(14, "yellow")

147Chapter 12. Programming Paradigms

>> Created!
>> Created!
>> Created!

There is more to an orange than its physical properties, like color and weight. Oranges also
do things, like rot, that you can model with methods. Here is how you can give an Orange
object the ability to rot:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

http://tinyurl.com/zcp32pz

class Orange():
def __init__(self, w, c):

"""weights are in oz"""
self.weight = w
self.color = c
self.mold = 0
print("Created!")

def rot(self, days, temp):
self.mold = days * temp

orange = Orange(6, "orange")
print(orange.mold)
orange.rot(10, 98)
print(orange.mold)

>> Created!
>> 0
>> 98.0

The method rot accepts two parameters: the numbers of days since someone picked the
orange, and the average temp during that time. When you call it, the method uses a formula
to increment the instance variable mold, which works because you can change the value of
any instance variable inside of any method. Now, the orange can rot.

You can define multiple methods in a class. Here is an example of modeling a rectangle with
a method to calculate its area, and another method to change its size:

148 Part II Introduction to Object-Oriented Programming

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22

http://tinyurl.com/j28qoox

class Rectangle():
def __init__(self, w, l):

self.width = w
self.len = l

def area(self):
return self.width * self.len

def change_size(self, w, l):
self.width = w
self.len = l

rectangle = Rectangle(10, 20)
print(rectangle.area())
rectangle.change_size(20, 40)
print(rectangle.area())

>> 200
>> 800

In this example, Rectangle objects have two instance variables: len and width. The
area method returns the area of the Rectangle object by multiplying the instance
variables together, and the change_size method changes them by assigning them to the
numbers the caller passes in as parameters.

Object-oriented programming has several advantages. It encourages code reuse, and thus
decreases the amount of time spent developing and maintaining code. It also encourages
breaking problems up into multiple pieces, which results in code that is easy to maintain. A
disadvantage of object-oriented programming is that creating programs takes extra effort
because a great deal of planning is often involved in designing them.

149Chapter 12. Programming Paradigms

Vocabulary
Programming paradigm: A style of programming.
State: The value of a program's variables while it is running.
Global state: The value of a program's global variables while it is running.
Procedural programming: A programming style in which you write a sequence of steps
moving toward a solution—with each step changing the program's state.
Functional programming: Functional programming addresses the problems that arise in
procedural programming by eliminating global state by passing it from function to function.
Side effect: Changing the state of a global variable.
Object-oriented: A programming paradigm where you define objects that interact with
each other.
Classes: A mechanism allowing the programmer to classify and group together similar
objects.
Methods: Methods are suites in a class. They are like functions, but you define them inside
of a class, and you can only call them on the object the class creates.
Instance: Every object is an instance of a class. Every instance of a class has the same type
as all the other instances of that class.
Instance variables: Variables that belong to an object.
Magic method: A method Python uses in different situations, like initializing an object.
Instantiating a class: Creating a new object using a class.

Challenges
1. Define a class called Apple with four instance variables that represent four attributes of
an apple.
2. Create a Circle class with a method called area that calculates and returns its area.
Then create a Circle object, call area on it, and print the result. Use Python's pi function
in the built-in math module.
3. Create a Triangle class with a method called area that calculates and returns its area.
Then create a Triangle object, call area on it, and print the result.
4. Make a Hexagon class with a method called calculate_perimeter that calculates
and returns its perimeter. Then create a Hexagon object, call calculate_perimeter
on it, and print the result.

Solutions: http://tinyurl.com/gpqe62e.

150

151

Chapter 13. The Four Pillars of
Object-Oriented Programming
"Good design adds value faster than it adds cost."
—Thomas C. Gale

There are four main concepts in object-oriented programming: encapsulation, abstraction,
polymorphism, and inheritance. Together, they form the four pillars of object-
oriented programming. All four concepts must be present in a programming language
for it to be considered a fully object-oriented programming language, like Python, Java,
and Ruby. In this chapter, you will learn about each of the four pillars of object-oriented
programming.

Encapsulation
Encapsulation refers to two concepts. The first is that in object-oriented
programming, objects group variables (state) and methods (for altering state or doing
calculations that use state) in a single unit—the object:

1
2
3
4
5
6
7
8
9
10
11
12

http://tinyurl.com/j74o5rh

class Rectangle():
def __init__(self, w, l):

self.width = w
self.len = l

def area(self):
return self.width * self.len

In this case, the instance variables len and width hold the object's state. The object's state
is grouped in the same unit (the object) as the method area. The method uses the object's
state to return the rectangle's area.

The second concept, encapsulation, refers to hiding a class's internal data to prevent the
client, the code outside the class that uses the object, from directly accessing it:

152 Part II Introduction to Object-Oriented Programming

1
2
3
4
5
6
7
8
9
10

http://tinyurl.com/jtz28ha

class Data:
def __init__(self):

self.nums = [1, 2, 3, 4, 5]

def change_data(self, index, n):
self.nums[index] = n

The class Data has an instance variable called nums that contains a list of integers. Once
you create a Data object, there are two ways you can change the items in nums: by using
the change_data method, or by directly accessing the nums instance variable using the
Data object:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

http://tinyurl.com/huczqr5

class Data:
def __init__(self):

self.nums = [1, 2, 3, 4, 5]

def change_data(self, index, n):
self.nums[index] = n

data_one = Data()
data_one.nums[0] = 100
print(data_one.nums)

data_two = Data()
data_two.change_data(0, 100)
print(data_two.nums)

>> [100, 2, 3, 4, 5]
>> [100, 2, 3, 4, 5]

153Chapter 13. The Four Pillars of Object-Oriented Programming

Both ways of changing an item in the nums instance variable work, but what happens if you
decide to make the variable nums a tuple instead of a list? If you make this change, any client
code trying to alter the items in the variable nums, like you did with nums[0] = 100, will
no longer work, because tuples are immutable.

Many programming languages solve this problem by allowing programmers to define
private variables and private methods: variables and methods that objects can access
in the code that implements the various methods, but the client cannot. Private variables
and methods are useful when you have a method or variable that your class uses internally,
but you plan to change the implementation of your code later (or you want to preserve the
flexibility of that option), and thus don't want whoever is using the class to rely on them
because they might change (and would then break the client's code). Private variables are
an example of the second concept encapsulation refers to; private variables hide a class's
internal data to prevent the client from directly accessing it. Public variables, on the other
hand, are variables a client can access.

Python does not have private variables. All of Python's variables are public. Python solves the
problem private variables address another way—by using naming conventions. In Python,
if you have a variable or method the caller should not access, you precede its name with an
underscore. Python programmers know if the name of a method or variable starts with an
underscore, they shouldn't use it (although they are still able to at their own risk):

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

http://tinyurl.com/jkaorle

class PublicPrivateExample:
def __init__(self):

self.public = "safe"
self._unsafe = "unsafe"

def public_method(self):
clients can use this
pass

def _unsafe_method(self):
clients shouldn't use this
pass

154 Part II Introduction to Object-Oriented Programming

Client programmers reading this code know the variable self.public is safe to use, but
they shouldn't use the variable self._unsafe because it starts with an underscore, and
if they do, they do so at their own risk. The person maintaining this code has no obligation
to keep the variable self._unsafe around, because callers are a not supposed to be
accessing it. Client programmers know the method public_method is safe to use, whereas
the method _unsafe_method is not, because its name starts with an underscore.

Abstraction
Abstraction is the process of "taking away or removing characteristics from something in
order to reduce it to a set of essential characteristics."7 You use abstraction in object-oriented
programming when you model objects using classes and omit unnecessary details.

Say you are modeling a person. A person is complex: they have a hair color, eye color, height,
weight, ethnicity, gender, and more. If you create a class to represent a person, some of
these details may not be relevant to the problem you are trying to solve. An example of
abstraction is creating a Person class, but omitting some attributes a person has, like an eye
color and height. The Person objects your class creates are abstractions of people. It is a
representation of a person stripped down to only the essential characteristics necessary for
the problem you are solving.

Polymorphism
Polymorphism is "the ability (in programming) to present the same interface for differing
underlying forms (data types)."8 An interface is a function or a method. Here is an example
of presenting the same interface for different data types:

1
2
3
4
5
6

http://tinyurl.com/hrxd7gn

print("Hello, World!")
print(200)
print(200.1)

>> Hello, World!
>> 200
>> 200.1

You presented the same interface, the print function, for three different data types: a string,
an integer, and a floating-point number. You didn't have to define and call three separate

155Chapter 13. The Four Pillars of Object-Oriented Programming

functions (like print_string to print strings, print_int to print integers, and print_
float to print floating-point numbers) to print three different data types; instead, you were
able to use the print function to present one interface to print them all.

The built-in function type returns the data type of an object:

1
2
3
4
5
6

http://tinyurl.com/gnxq24x

type("Hello, World!")
type(200)
type(200.1)

>> <class 'str'>
>> <class 'int'>
>> <class 'float'>

Let's say you want to write a program that creates three objects that draw themselves:
triangles, squares, and circles. You can achieve this goal by defining three different classes:
Triangle, Square, and Circle, and defining a method called draw for each of them.
Triangle.draw() will draw a triangle. Square.draw() will draw a square. And
Circle.draw() will draw a circle. With this design, each of the objects has a draw
interface that knows how to draw itself. You presented the same interface for three different
data types.

If Python did not support polymorphism, you would need a method to draw each shape:
perhaps draw_triangle to draw a Triangle object, draw_square to draw a
Square object, and draw_circle to draw a Circle object.

Also, if you had a list of these objects and you wanted to draw each one, you would have to
test each object to get its type, then call the correct method for that type, making the program
larger, harder to read, harder to write, and more fragile. It also makes the program harder
to enhance, because every time you added a new shape to your program, you would have to
track down every place in the code where you draw the shapes and add a test (to find what
method to use) for that new shape type, plus a call to that new draw function. Here is an
example of drawing shapes with and without polymorphism:

156 Part II Introduction to Object-Oriented Programming

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

Do not run.

Drawing shapes
w/o polymorphism
shapes = [tr1, sq1, cr1]
for a_shape in shapes:

if type(a_shape) == "Triangle":
a_shape.draw_triangle()

if type(a_shape) == "Square":
a_shape.draw_square()

if type(a_shape) == "Circle":
a_shape.draw_circle()

Drawing shapes
with polymorphism
shapes = [tr1,

sw1,
cr1]

for a_shape in shapes:
a_shape.draw()

If you wanted to add a new shape to the shapes list without polymorphism, you would have
to modify the code in the for-loop to test a_shape type and call its draw method.With
a uniform, polymorphic interface, you can add as many shape classes to the shapes list in
the future as you want, and the shape will be able to draw itself without any additional code.

Inheritance
Inheritance in programming is similar to genetic inheritance. In genetic inheritance, you
inherit attributes like eye color from your parents. Similarly, when you create a class, it can
inherit methods and variables from another class. The class that is inherited from is the
parent class, and the class that inherits is the child class. In this section, you will model
shapes using inheritance. Here is a class that models a shape:

157Chapter 13. The Four Pillars of Object-Oriented Programming

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

http://tinyurl.com/zrnqeo3

class Shape():
def __init__(self, w, l):

self.width = w
self.len = l

def print_size(self):
print("""{} by {}

""".format(self.width,
self.len))

my_shape = Shape(20, 25)
my_shape.print_size()

>> 20 by 25

With this class, you can create Shape objects with width and len. In addition, Shape
objects have the method print_size, which prints their width and len.

You can define a child class that inherits from a parent class by passing the name of the
parent class as a parameter to the child class when you create it. The following example
creates a Square class that inherits from the Shape class:

158 Part II Introduction to Object-Oriented Programming

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

http://tinyurl.com/j8lj35s

class Shape():
def __init__(self, w, l):

self.width = w
self.len = l

def print_size(self):
print("""{} by {}

""".format(self.width,
self.len))

class Square(Shape):
pass

a_square = Square(20,20)
a_square.print_size()

>> 20 by 20

Because you passed the Shape class to the Square class as a parameter; the Square class
inherits the Shape class's variables and methods. The only suite you defined in the Square
class was the keyword pass, which tells Python not to do anything.

Because of inheritance, you can create a Square object, pass it a width and length, and
call the method print_size on it without writing any code (aside from pass) in the
Square class. This reduction in code is important because avoiding repeating code makes
your program smaller and more manageable.

A child class is like any other class; you can define methods and variables in it without affecting
the parent class:

159Chapter 13. The Four Pillars of Object-Oriented Programming

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22

http://tinyurl.com/hwjdcy9

class Shape():
def __init__(self, w, l):

self.width = w
self.len = l

def print_size(self):
print("""{} by {}

""".format(self.width,
self.len))

class Square(Shape):
def area(self):

return self.width * self.len

a_square = Square(20, 20)
print(a_square.area())

>> 400

When a child class inherits a method from a parent class, you can override it by defining
a new method with the same name as the inherited method. A child class's ability to
change the implementation of a method inherited from its parent class is called method
overriding.

160 Part II Introduction to Object-Oriented Programming

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

http://tinyurl.com/hy9m8ht

class Shape():
def __init__(self, w, l):

self.width = w
self.len = l

def print_size(self):
print("""{} by {}

""".format(self.width,
self.len))

class Square(Shape):
def area(self):

return self.width * self.len

def print_size(self):
print("""I am {} by {}

""".format(self.width,
self.len))

a_square = Square(20, 20)
a_square.print_size()

>> I am 20 by 20

In this case, because you defined a method named print_size, the newly defined
method overrides the parent method of the same name, and it prints a new message when
you call it.

Composition
Now that you've learned about the four pillars of object-oriented programming, I am going
to cover one more important concept: composition. Composition models the "has a"
relationship by storing an object as a variable in another object. For example, you can

161Chapter 13. The Four Pillars of Object-Oriented Programming

use composition to represent the relationship between a dog and its owner (a dog has an
owner). To model this, first you define classes to represent dogs and people:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

http://tinyurl.com/zqg488n

class Dog():
def __init__(self,

name,
breed,

owner):
self.name = name
self.breed = breed
self.owner = owner

class Person():
def __init__(self, name):

self.name = name

Then, when you create a Dog object, you pass in a Person object as the owner parameter:

1
2
3
4
5
6
7
8
9
10

http://tinyurl.com/zlzefd4
Continue from
last example

mick = Person("Mick Jagger")
stan = Dog("Stanley",

"Bulldog",
mick)

print(stan.owner.name)

>> Mick Jagger

Now the stan object "Stanley" has an owner—a Person object named "Mick
Jagger"—stored in the owner instance variable.

162 Part II Introduction to Object-Oriented Programming

Vocabulary
The four pillars of object-oriented programming: The four main concepts in
object-oriented programming: inheritance, polymorphism, abstraction, and encapsulation.
Inheritance: In genetic inheritance, you inherit attributes like eye color from your
parents. Similarly, when you create a class, it can inherit methods and variables from
another class. Parent class: The class that is inherited from.
Child class: The class that inherits.
Method overriding: A child class's ability to change the implementation of a
method inherited from its parent class.
Polymorphism: Polymorphism is "the ability (in programming) to present the
same interface for differing underlying forms (data types)."9

Abstraction: The process of "taking away or removing characteristics from something
in order to reduce it to a set of essential characteristics."10
Client: The code outside the class that uses the object.
Encapsulation: Encapsulation refers to two concepts. The first concept is that
in object-oriented programming, objects group variables (state) and methods (for altering
state) in a single unit—the object. The second concept is hiding a class's internal data to
prevent the client, the person using the code, from accessing it.
Composition: Composition models the "has a" relationship by storing an object as
a variable in another object.

Challenges
1. Create Rectangle and Square classes with a method called calculate_
perimeter that calculates the perimeter of the shapes they represent. Create Rectangle
and Square objects and call the method on both of them.
2. Define a method in your Square class called change_size that allows you to pass in a
number that increases or decreases (if the number is negative) each side of a Square object
by that number.
3. Create a class called Shape. Define a method in it called what_am_i that prints "I am
a shape" when called. Change your Square and Rectangle classes from the previous
challenges to inherit from Shape, create Square and Rectangle objects, and call the
new method on both of them.
4. Create a class called Horse and a class called Rider. Use composition to model a horse
that has a rider.

Solutions: http://tinyurl.com/hz9qdh3.

163

Chapter 14. More Object-Oriented
Programming
"Treat your code like poetry and take it to the edge of the bare minimum."
—Ilya Dorman

In this chapter, I cover additional concepts related to object-oriented programming.

Class Variables vs. Instance Variables
In Python, classes are objects. This idea comes from Smalltalk, an influential programming
language that pioneered object-oriented programming. Each class in Python is an object that
is an instance of class "type":

1
2
3
4
5
6
7
8

http://tinyurl.com/h7ypzmd

class Square:
pass

print(Square)

>> <class '__main__.Square'>

In this example, the class Square is an object, and you printed it.

Classes have two types of variables: class variables and instance variables. The
variables you've seen so far have been instance variables, defined with the syntax self.
[variable_name] = [variable_value]. Instance variables belong to objects:

164 Part II Introduction to Object-Oriented Programming

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

http://tinyurl.com/zmnf47e

class Rectangle():
def __init__(self, w, l):

self.width = w
self.len = l

def print_size(self):
print("""{} by {}

""".format(self.width,
self.len))

my_rectangle = Rectangle(10, 24)
my_rectangle.print_size()

>> 10 by 24

In this example, width and len are instance variables.

Class variables belong to the object Python creates for each class definition and the objects
they create. You define class variables like regular variables (but you must define them inside
of a class). You can access them with class objects, and with an object created with a class
object. You access them the same way you access instance variables (preceding the variable
name with self.). Class variables are useful; they allow you to share data between all of the
instances of a class without relying on global variables:

165Chapter 14. More Object-Oriented Programming

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

http://tinyurl.com/gu9unfc

class Rectangle():
recs = []

def __init__(self, w, l):
self.width = w
self.len = l
self.recs.append((self.width,

self.len))

def print_size(self):
print("""{} by {}

""".format(self.width,
self.len))

r1 = Rectangle(10, 24)
r2 = Rectangle(20, 40)
r3 = Rectangle(100, 200)

print(Rectangle.recs)

>> [(10, 24), (20, 40), (100, 200)]

In this example, you added a class variable called recs to the Rectangle class. You defined
it outside of the __init__ method because Python only calls the __init__ method
when you create an object, and you want to be able to access the class variable using the class
object (which does not call the __init__ method).

Next, you created three Rectangle objects. Each time a Rectangle object is created,
the code in the __init__ method appends a tuple containing the width and length of
the newly created object to the recs list. With this code, whenever you create a new
Rectangle object, it is automatically added to the recs list. By using a class variable,
you were able to share data between the different objects created by a class, without having
to use a global variable.

166 Part II Introduction to Object-Oriented Programming

Magic Methods
Every class in Python inherits from a parent class called Object. Python utilizes the methods
inherited from Object in different situations—like when you print an object:

1
2
3
4
5
6
7
8
9
10

http://tinyurl.com/ze8yr7s

class Lion:
def __init__(self, name):

self.name = name

lion = Lion("Dilbert")
print(lion)

>> <__main__.Lion object at 0x101178828>

When you print a Lion object, Python calls a magic method called __repr__ it inherited
from Object on it, and prints whatever the __repr__ method returns. You can override
the inherited __repr__ method to change what prints:

1
2
3
4
5
6
7
8
9
10
11
12
13
14

http://tinyurl.com/j5rocqm

class Lion:
def __init__(self, name):

self.name = name

def __repr__(self):
return self.name

lion = Lion("Dilbert")
print(lion)

>> Dilbert

Because you overrode the __repr__ method inherited from Object and changed
it to return the Lion object's name, when you print a Lion object, its name— in this

167Chapter 14. More Object-Oriented Programming

case, Dilbert— prints instead of something like <__main__.Lion object at
0x101178828> that the __repr__ method would have returned.

Operands in an expression must have a magic method the operator can use to evaluate
the expression. For example, in the expression 2 + 2, each integer object has a magic
method called __add__ that Python calls when it evaluates the expression. If you define
an __add__ method in a class, you can use the objects it creates as operands in an
expression with the addition operator:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

http://tinyurl.com/hlmhrwv

class AlwaysPositive:
def __init__(self, number):

self.n = number

def __add__(self, other):
return abs(self.n +

other.n)

x = AlwaysPositive(-20)
y = AlwaysPositive(10)

print(x + y)

>> 10

AlwaysPositive objects can be used as operands in an expression with the addition
operator because you defined the __add__ method. When Python evaluates an expression
with an addition operator, it calls the method __add__ on the first operand object, passes
the second operand object into __add__ as a parameter, and returns the result.

In this case, __add__ uses the built-in function abs to return the absolute value of two
numbers added together in an expression. Because you defined __add__ this way, two
AlwaysPositive objects evaluated in an expression with the addition operator will always
return the absolute value of the sum of the two objects; thus, the result of the expression is
always positive.

168 Part II Introduction to Object-Oriented Programming

Is
The keyword is returns True if two objects are the same object, and False if not:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

http://tinyurl.com/gt28gww

class Person:
def __init__(self):

self.name = 'Bob'

bob = Person()
same_bob = bob
print(bob is same_bob)

another_bob = Person()
print(bob is another_bob)

>> True
>> False

When you use the keyword is in an expression with the objects bob and same_bob
as operators, the expression evaluates to True because both variables point to the same
Person object. When you create a new Person object and compare it to the original
bob, the expression evaluates to False because the variables point to different Person
objects.

Use the is keyword to check if a variable is None:

169Chapter 14. More Object-Oriented Programming

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

http://tinyurl.com/jjettn2

x = 10
if x is None:

print("x is None :(")
else:

print("x is not None")

x = None
if x is None:

print("x is None :(")
else:

print("x is not None")

>> x is not None
>> x is None :(

Vocabulary
Class variable: A class variable belongs to a class object and the objects it creates.
Instance variable: An instance variable belongs to an object.
Private variables: A variable an object can access, but the client cannot.
Private method: A method an object can access, but the client cannot.
Public variable: A variable a client can access.

Challenges
1. Add a square_list class variable to a class called Square so that every time you
create a new Square object, the new object gets added to the list.
2. Change the Square class so that when you print a Square object, a message prints
telling you the len of each of the four sides of the shape. For example, if you create a square
with Square(29) and print it, Python should print 29 by 29 by 29 by 29.
3. Write a function that takes two objects as parameters and returns True if they are the
same object, and False if not.

Solutions: http://tinyurl.com/j9qjnep.

170

171

Chapter 15. Bringing It All Together
"It's all talk until the code runs."
—Ward Cunningham

In this chapter, you are going to create the popular card game War. In War, each player
draws a card from the deck, and the player with the highest card wins. You will build War by
defining classes representing a card, a deck, a player, and finally, the game itself.

Cards
Here is a class that models playing cards:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

http://tinyurl.com/jj22qv4

class Card:
suits = ("spades",

"hearts",
"diamonds",
"clubs")

values = (None, None,"2", "3",
"4", "5", "6", "7",
"8", "9", "10",
"Jack", "Queen",
"King", "Ace")

def __init__(self, v, s):
"""suit + value are ints"""
self.value = v
self.suit = s

def __lt__(self, c2):
if self.value < c2.value:

return True

172 Part II Introduction to Object-Oriented Programming

27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

if self.value == c2.value:
if self.suit < c2.suit:

return True
else:

return False
return False

def __gt__(self, c2):
if self.value > c2.value:

return True
if self.value == c2.value:

if self.suit > c2.suit:
return True

else:
return False

return False

def __repr__(self):
v = self.values[self.value] + " of " \
+ self.suits[self.suit]
return v

The Card class has two class variables, suits and values. suits is a tuple of
strings representing all the suits a card could be: spades, hearts, diamonds,
clubs. values is a tuple of strings representing the different numeric values a card
could be: 2–10, Jack, Queen, King and Ace. The items at the first two indexes of the
values tuple are None, so that the strings in the tuple match up with the index they
represent—so the string "2" in the values tuple is at index 2.

Card objects have two instance variables: suit and value—each represented by an
integer. Together, the instance variables represent what kind of card the Card object is.
For example, you create a 2 of hearts by creating a Card object and passing it the
parameters 2 (for the suit) and 1 (for the value—1 because hearts is at index 1 in the
suits tuple).

The definitions in the magic methods __lt__ and __gt__ allow you to c ompare t wo
Card objects in an expression using the greater than and less than operators. The code in
these methods determines if the card is greater than or less than the other card passed in as

173Chapter 15. Bringing It All Together

a parameter. The code in these magic methods can also handle if the cards have the same
value—for example if both cards are 10s. If this occurs, the methods use the value of the
suits to break the tie. The suits are arranged in order of strength in the suits tuple—with
the strongest suit last, and thus assigned the highest index, and the least powerful suit
assigned the lowest index.

1
2
3
4
5
6

http://tinyurl.com/j6donnr

card1 = Card(10, 2)
card2 = Card(11, 3)
print(card1 < card2)

>> True

1
2
3
4
5
6

http://tinyurl.com/hc9ktlr

card1 = Card(10, 2)
card2 = Card(11, 3)
print(card1 > card2)

>> False

The last method in the Card class is the magic method __repr__. Its code uses the
value and suit instance variables to look up the value and suit of the card in the
values and suits tuples, and returns them so you can print the card a Card
object represents:

1
2
3
4
5

http://tinyurl.com/z57hc75

card = Card(3, 2)
print(card)

>> 3 of diamonds

Deck
Next, you need to define a class to represent a deck of cards:

174 Part II Introduction to Object-Oriented Programming

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

http://tinyurl.com/jz8zfz7
from random import shuffle

class Deck:
def __init__(self):

self.cards = []
for i in range(2, 15):

for j in range(4):
self.cards.append(Card(i, j))

shuffle(self.cards)

def rm_card(self):
if len(self.cards) == 0:

return
return self.cards.pop()

When you initialize the Deck object, the two for-loops in __init__ create Card
objects representing all the cards in a 52-card deck and appends them to the cards list.
The first loop is from 2 to 15 because the first value for a card is 2, and the last value for
a card is 14 (the ace). Each time around the inner loop, a new card is created using the
integer from the outer loop as the value (i.e., 14 for an ace) and the integer from the inner
loop as the suit (i.e. a 2 for hearts). This process creates 52 cards—one card for every suit
and value combination. After the method creates the cards, the shuffle method from the
random module randomly rearranges the items in the cards list; mimicking the shuffling
of a deck of cards.

Our deck has one other method called rm_card that removes and returns a card from the
cards list, or returns None if it is empty. You can use the Deck class to create a new deck
of cards and print each card in it:

1
2
3
4
5
6

http://tinyurl.com/hsv5n6p

deck = Deck()
for card in deck.cards:

print(card)

>> 4 of spades
>> 8 of hearts

175Chapter 15. Bringing It All Together

…

Player
You need a class to represent each player in the game to keep track of their cards and how
many rounds they've won:

1
2
3
4
5
6
7
8

http://tinyurl.com/gwyrt2s

class Player:
def __init__(self, name):

self.wins = 0
self.card = None
self.name = name

The Player class has three instance variables: wins to keep track of how many rounds a
player has won, card to represent the card a player is currently holding, and name to keep
track of a player's name.

Game
Finally, you need a class to represent the game:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

http://tinyurl.com/huwq8mw

class Game:
def __init__(self):

name1 = input("p1 name ")
name2 = input("p2 name ")
self.deck = Deck()
self.p1 = Player(name1)
self.p2 = Player(name2)

def wins(self, winner):
w = "{} wins this round"
w = w.format(winner)
print(w)

176 Part II Introduction to Object-Oriented Programming

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56

def draw(self, p1n, p1c, p2n, p2c):
d = "{} drew {} {} drew {}"
d = d.format(p1n, p1c, p2n, p2c)
print(d)

def play_game(self):
cards = self.deck.cards
print("beginning War!")
while len(cards) >= 2:

m = "q to quit. Any " + "key to play:"
response = input(m)
if response == 'q':

break
p1c = self.deck.rm_card()
p2c = self.deck.rm_card()
p1n = self.p1.name
p2n = self.p2.name
self.draw(p1n, p1c, p2n, p2c)
if p1c > p2c:

self.p1.wins += 1
self.wins(self.p1.name)

else:
self.p2.wins += 1
self.wins(self.p2.name)

win = self.winner(self.p1, self.p2)

print("War is over.{} wins".format(win))

def winner(self, p1, p2):
if p1.wins > p2.wins:

return p1.name
if p1.wins < p2.wins:

return p2.name
return "It was a tie!"

177Chapter 15. Bringing It All Together

When you create the game object, Python calls the __init__ method, and the input
function collects the names of the two players in the game and stores them in the variables
name1 and name2. Next, you create a new Deck object, store it in the instance variable
deck, and create two Player objects using the names in name1 and name2.

The method play_game in the Game class starts the game. There is a loop in the method
that keeps the game going as long as there are two or more cards left in the deck, and as
long as the variable response does not equal q. Each time around the loop, you assign the
variable response to the input of the user. The game continues until either the user types
"q", or when there are less than two cards left in the deck.

Two cards are drawn each time through the loop, and the play_game method assigns the
first card to p1, and the second card to p2. Then, it prints the name of each player and the
card they drew, compares the two cards to see which card is greater, increments the wins
instance variable for the player with the greater card, and prints a message that says who won.

The Game class also has a method called winner that takes two player objects, looks at the
number of rounds they won, and returns the player who won the most rounds.

When the Deck object runs out of cards, the play_game method prints a message saying
the war is over, calls the winner method (passing in both p1 and p2), and prints a message
with the result—the name of the player who won.

War
Here is the full game:

1
2
3
4
5
6
7
8
9
10
11
12
13
14

http://tinyurl.com/ho7364a

from random import shuffle

class Card:
suits = ["spades",

"hearts",
"diamonds",
"clubs"]

values = [None, None,"2", "3",

178 Part II Introduction to Object-Oriented Programming

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

"4", "5", "6", "7",
"8", "9", "10",
"Jack", "Queen",
"King", "Ace"]

def __init__(self, v, s):
"""suit + value are ints"""
self.value = v
self.suit = s

def __lt__(self, c2):
if self.value < c2.value:

return True
if self.value == c2.value:

if self.suit < c2.suit:
return True

else:
return False

return False

def __gt__(self, c2):
if self.value > c2.value:

return True
if self.value == c2.value:

if self.suit > c2.suit:
return True

else:
return False

return False

def __repr__(self):
v = self.values[self.value] + " of " \
 + self.suits[self.suit]
return v

class Deck:

179Chapter 15. Bringing It All Together

56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96

def __init__(self):
self.cards = []
for i in range(2, 15):

for j in range(4):
self.cards.append(Card(i, j))

shuffle(self.cards)

def rm_card(self):
if len(self.cards) == 0:

return
return self.cards.pop()

class Player:
def __init__(self, name):

self.wins = 0
self.card = None
self.name = name

class Game:
def __init__(self):

name1 = input("p1 name ")
name2 = input("p2 name ")
self.deck = Deck()
self.p1 = Player(name1)
self.p2 = Player(name2)

def wins(self, winner):
w = "{} wins this round"
w = w.format(winner)
print(w)

def draw(self, p1n, p1c, p2n, p2c):
d = "{} drew {} {} drew {}"
d = d.format(p1n, p1c, p2n, p2c)
print(d)

180 Part II Introduction to Object-Oriented Programming

97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133

def play_game(self):
cards = self.deck.cards
print("beginning War!")
while len(cards) >= 2:

m = "q to quit. Any " + "key to play:"
response = input(m)
if response == 'q':

break
p1c = self.deck.rm_card()
p2c = self.deck.rm_card()
p1n = self.p1.name
p2n = self.p2.name
self.draw(p1n, p1c, p2n, p2c)
if p1c > p2c:

self.p1.wins += 1
self.wins(self.p1.name)

else:
self.p2.wins += 1
self.wins(self.p2.name)

win = self.winner(self.p1, self.p2)

print("War is over.{} wins".format(win))

def winner(self, p1, p2):
if p1.wins > p2.wins:

return p1.name
if p1.wins < p2.wins:

return p2.name
return "It was a tie!"

game = Game()
game.play_game()

>> "p1 name "
…

181

182

Part III
Introduction to Programming Tools

183

Chapter 16. Bash
"I can't think of a job I'd rather do than computer programming. All day, you create patterns
and structure out of the formless void, and you solve dozens of smaller puzzles along the
way."
—Peter Van Der Linden

In this chapter, you learn to use a command-line interface called Bash. A command-
line interface is a program you type instructions into that your operating system executes.
Bash is a particular implementation of a command-line interface that comes with most
Unix-like operating systems. Henceforth, I will use command-line interface and
command-line interchangeably.

When I got my first programming job, I made the mistake of spending all of my time
practicing programming. Of course, you need to be a talented programmer to program
professionally. But there are also a variety of other skills you need to have, like knowing how
to use the command-line. The command-line is the "control center" for everything you will
be doing that doesn't involve writing code.

For instance, later in this book you will learn to use package managers to install other people's
programs and version control systems to collaborate with other programmers. You will
operate both of these tools from the command-line. Furthermore, most software written
today involves accessing data across the Internet, and the majority of the world's web servers
run Linux. These servers do not have a user interface; you can only access them via the
command-line.

The command-line, package managers, regular expressions and version control are core tools
in a programmer's arsenal. Everyone on the teams I've worked on has been an expert at these
things.

When you program professionally, you will be expected to be proficient with them as well. It
took me a long time to catch up, and I wish I had started learning to use these tools earlier.

Following Along
If you are using either Ubuntu or Unix, your computer comes with Bash. Windows, however,
comes with a command-line interface called Command Prompt (which you cannot use in
this chapter). The newest version of Windows 10 comes with Bash. You can find instructions
on how to use Bash on Windows 10 at http://theselftaughtprogrammer.io/windows10bash.

184 Part III Introduction to Programming Tools

If you are using Windows, you can use Amazon AWS to set up a free web server running
Ubuntu. Setting up a server is easy, and AWS is widely used in the programing world, so it
will give you valuable experience. Head to http://theselftaughtprogrammer.io/aws to get
started.

If you are using Windows, and you do not want to set up a server, you can follow along with
the examples by going to http://theselftaughtprogrammer.io/bashapp, where you will find
a link to a web app that emulates Bash that you can use to follow along with most of the
examples.

After this chapter, you can follow along with the examples in the next two chapters using
Windows Command Prompt. You can find it by searching for Command Prompt from the
Run Window.

Finding Bash
You can find Bash on your computer by searching for Terminal from the icon titled
Search your computer and online resources if you are using Ubuntu, or
from Spotlight search if you are using a Mac.

Commands
Bash is similar to the Python Shell. You type commands, which are like functions in Python,
into Bash. Then you type a space and the parameters you want to pass to the command (if
any). Hit the enter key, and Bash returns the result. The command echo is similar to the
print function in Python.

Whenever you see a dollar sign followed by a command, in either this book or in
programming documentation, it means you need to type the command into the command-
line:

http://tinyurl.com/junx62n

$ echo Hello, World!

185Chapter 16. Bash

>> Hello, World!

First, you typed the command echo into Bash, followed by a space and Hello, World!
as a parameter. When you press enter, Hello, World! prints in Bash.

You can use programs you've installed, like Python, from the command-line. Enter the
command python3 (As I am writing, the Bash Web App doesn't come with Python 3. Type
python to use Python 2):

http://tinyurl.com/htoospk

$ python3

Now you can execute Python code:

http://tinyurl.com/jk2acua

print("Hello, World!")

>> Hello, World!

Enter exit() to exit Python.

Recent Commands
You can scroll through your recent commands by pressing the up and down arrows in Bash.
To see a list of all of your recent commands use the command history:

http://tinyurl.com/go2spbt

$ history

>> 1. echo Hello, World!

Relative vs. Absolute Paths
An operating system is made up of directories and files. A directory is another word for
a folder on your computer. All directories and files have a path, an address where the
directory or file exists in your operating system. When you use Bash, you are always in a
directory, located at a particular path. You can use the command pwd, which stands for

186 Part III Introduction to Programming Tools

print working directory (your working directory is the directory you are currently in), to
print the name of the directory you are in:

http://tinyurl.com/hptsqhp

$ pwd

>> /Users/coryalthoff

Your operating system represents its directories, and your directory location, with a tree.
In computer science, a tree is an important concept called a data structure (covered in Part
IV). In a tree, there is a root at the top. The root can have branches, and each one of the
branches can have more branches, and those branches can have branches, ad infinitum.
The following image is an example of a tree that represents the directories in an operating
system:

Every branch of the tree is a directory, including the root. The tree shows how the
directories connect to each other. Whenever you are using Bash, you are at a location on
your operating system's tree. A path is a way of expressing that location. There are two
ways to give the path of a file or directory on a Unix-like operating system: an absolute
path and a relative path.

An absolute path gives the location of a file or directory starting from the root directory. An
absolute path is made up of the name of directories in the tree, in order of their proximity
to the tree's root, separated by forward slashes. The absolute path to the bernie directory
(in the operating system illustrated in the image above) is /home/bernie. The first slash
represents the root directory. The home directory follows it. Then there is another slash and
the bernie directory.

187Chapter 16. Bash

Another way of specifying a location on your computer is a relative path. Instead of starting
at the root directory, a relative path starts with your current working directory. If your path
does not begin with a forward slash, Bash knows you are using a relative path. If you were in
the home directory in the image of a tree from the previous example, the relative path to the
projects directory would be bernie/projects. If you were in the home directory,
the relative path to bernie is simply bernie. If you were in the root directory, the
relative path to projects would be home/bernie/projects.

Navigating
You can change directories by passing the command cd an absolute or relative path as a
parameter. Enter the cd command followed by the absolute path / to navigate to your
operating system's root directory:

http://tinyurl.com/hjgz79h

$ cd /

You can verify your location with the command pwd:

http://tinyurl.com/j6ax35s

$ pwd

>> /

The list directory command, ls, prints the directories and folders in your current working
directory:

http://tinyurl.com/gw4d5yw

$ ls

>> bin dev initrd.img lost+found ...

You can create a new directory by passing in the name of the directory you want to create
to the make directory command, mkdir. Directory names cannot have spaces in them.
Navigate to your home directory (~ is a shortcut for your home directory in Unix-like
operating systems) and use the mkdir command to create a new directory called tstp:

188 Part III Introduction to Programming Tools

http://tinyurl.com/zavhjeq

$ cd ~
$ mkdir tstp

You can verify your location with the command 1s:

http://tinyurl.com/hneq2f6

$ ls

>> tstp

Now, use the cd command to enter the tstp directory by passing it the relative path to
tstp as a parameter:

http://tinyurl.com/zp3nb2l

$ cd tstp

You can use the cd command followed by two periods to move back one directory (one level
up the tree):

http://tinyurl.com/z2gevk2

$ cd ..

You can delete a directory with the remove directory command, rmdir. Use it to remove
the directory tstp:

http://tinyurl.com/jkjjo6s

$ rmdir tstp

Finally, verify that you deleted the directory with the ls command.

http://tinyurl.com/z32xn2n

$ ls

189Chapter 16. Bash

Flags
Commands have a concept called flags that allow the issuer of the command to change
the command's behavior. Flags are options for commands that can have a value of either
True or False. By default, all of a command's flags start set to False. If you add a flag
to a command, Bash sets the value of the flag to True and the behavior of the command
changes. To set a flag to True, you put one (-) or two (--) hyphen symbols in front of
the name of the flag (depending on the operating system).

For example, you can add the flag --author to the ls command to set the author flag to
True. Adding this flag to the ls command alters its behavior. When you add this flag to the
ls command, it prints all of the directories and files in a directory, but also prints the name
of the author, the person that created them.

On Unix, you use one hyphen in front of a flag:

http://tinyurl.com/j4y5kz4

$ ls -author

>> drwx------+ 13 coryalthoff 442B Sep 16 17:25 Pictures
>> drwx------+ 25 coryalthoff 850B Nov 23 18:09 Documents

And on Linux you use two:

http://tinyurl.com/hu9c54q

$ ls --author

>> drwx------+ 13 coryalthoff 442B Sep 16 17:25 Pictures
>> drwx------+ 25 coryalthoff 850B Nov 23 18:09 Documents

190 Part III Introduction to Programming Tools

Hidden Files
Your operating system and many programs on your computer store data in hidden files.
Hidden files are files that, by default, are not shown to users because changing them could
affect the programs that depend on them. Hidden files start with a period, for example,
.hidden. You can view hidden files by adding the flag -a, which stands for all, to the ls
command. The command touch creates a new file from the command line.

The touch command creates a new file. Use it to create a hidden file named .self_
taught:

http://tinyurl.com/hfawo8t

$ touch .self_taught

Test if you can see it with the commands ls and ls -a.

pipes
In Unix-like operating systems, the vertical bar character (|) is called a pipe. You can use
a pipe to pass the output of a command to another command as its input. For example, you
can use the output of the ls command as the input of the less command (make sure you
are not in an empty directory):

http://tinyurl.com/zjne9f5

$ ls | less

>> Applications …

The result is a text file with the output of ls opened up in the program less (press q to
quit less).

Environmental Variables
Environmental variables are variables, stored in your operating system, that programs
can use to get data about the environment they are running in such as the name of the
computer the program is running on or the name of the operating system user running the
program. You can create a new environmental variable in Bash with the syntax export
variable_name=[variable_value]. To reference an environmental variable in
Bash, you must put a dollar sign in front of its name:

191Chapter 16. Bash

http://tinyurl.com/jjbc9v2

$ export x=100
$ echo $x

>> 100

An environmental variable created like this only exists in the Bash window you created it in.
If you exit the Bash window you created the environmental variable in, reopen it and type
echo $x, Bash will no longer print 100 because the environmental variable x no longer
exists.

You can persist an environmental variable by adding it to a hidden file used by Unix-like
operating systems, located in your home directory, called .profile. Use your GUI to
navigate to your home directory. You can find the file path to your home directory from the
command line with pwd ~. Use a text editor to create a file called .profile. Type export
x=100 into the first line of the file, and save the file. Close and reopen Bash, and you should
be able to print the environmental variable x:

http://tinyurl.com/j5wjwdf

$ echo $x

>> 100

The variable will persist as long as it's in your .profile file. You can delete the variable by
removing it from your .profile file.

Users
Operating systems can have multiple users. A user is a person that uses the operating
system. Each user is assigned a username and password, which enables them to log in
and use the operating system. Each user also has a set of permissions: operations they
are allowed to perform. You can print the name of your operating system user with the
command whoami (the examples in this section will not work on Bash on Windows or the
Bash web app) :

1 $ whoami

>> coryalthoff

192 Part III Introduction to Programming Tools

Normally, you are the user you created when you installed your operating system. But this
user is not the most powerful user in your operating system. The highest-level user, who is the
user with the highest set of permissions, is called the root user. Every system has a root user
who can, for example, create and delete other users.

For security reasons, you usually do not log in as the root user. Instead, you precede
commands that you need to issue as the root user with the command sudo (superuser do).
sudo allows you to issue commands as the root user without compromising your system's
security by actually logging in as the root user. Here is an example of using the echo
command with sudo:

	 $ sudo echo Hello, World!

>> Hello, World!

If you've set up a password on your computer, you will be prompted for it when you issue
a command with sudo. sudo removes the safeguards that prevent you from harming
your operating system, so never issue a command with sudo unless you are confident the
command will not damage your operating system.

Learn More
I only covered the basics of Bash in this chapter. To learn more about using Bash, visit
http://theselftaughtprogrammer.io/bash.

Vocabulary
Command-line interface: A command-line interface is a program you type instructions
into that your operating system executes.
Command-line: Another name for a command-line interface.
Bash: A program that comes with most Unix-like operating systems that you type instructions
into and your operating system executes.
Command prompt: A command-line interface that comes with Windows.
Directory: Another word for a folder on your computer.
Working directory: The directory you are currently in.
Path: A way of expressing the location in your operating system of a file or directory.
Absolute path: The location of a file or directory starting from the root directory.
Relative path: The location of a file or directory starting from your current working
directory.

193Chapter 16. Bash

Pipe: The character |. On Unix-like operating systems, you can use a pipe to pass the output
of a command to another command as its input.
Environmental variables: Variables that your operating system and other programs store
data in.
$PATH: When you type a command into the Bash command shell, it looks for the command
in all the directories stored in an environmental variable named $PATH.
User: A person that uses the operating system.
Permissions: Operations operating system users are allowed to do.
Root user: The highest-level user, the user with the highest set of permissions.

Challenges
1. Print Self-taught in Bash.
2. Navigate to your home directory from another directory using an absolute and relative
path.
3. Create an environmental variable called $python_projects that is an absolute path
to the directory where you keep your Python files. Save the variable in your .profile file
and then use the command cd $python_projects to navigate there.

Solutions: http://tinyurl.com/zdeyg8y.

194

195

Chapter 17. Regular Expressions
"Talk is cheap. Show me the code."
—Linus Torvalds

Many programming languages and operating systems support regular expressions: a
"sequence of characters that define a search pattern."11 Regular expressions are helpful
because you can use them to search a file or other data for a complex pattern. For example,
you can use a regular expression to match all of the numbers in a file. In this chapter,
you will learn to define and pass regular expressions to grep, a command on Unix-like
operating systems that searches a file for patterns and returns the text it finds in the file
that matches the pattern. You will also learn to use regular expressions to search strings for
patterns in Python.

Setup
To get started, create a file called zen.txt. From the command-line (make sure you are
inside the directory where you created zen.txt) enter the command python3 -c
"import this". This will print The Zen of Python, a poem by Tim Peters:

The Zen of Python
Beautiful is better than ugly.
Explicit is better than implicit.
Simple is better than complex.
Complex is better than complicated.
Flat is better than nested.
Sparse is better than dense.
Readability counts.
Special cases aren't special enough to break the rules.
Although practicality beats purity.
Errors should never pass silently.
Unless explicitly silenced.
In the face of ambiguity, refuse the temptation to guess.
There should be one—and preferably only one—obvious way to do it.
Although that way may not be obvious at first unless you're Dutch.
Now is better than never.
Although never is often better than *right* now.
If the implementation is hard to explain, it's a bad idea.
If the implementation is easy to explain, it may be a good idea.

196 Part III Introduction to Programming Tools

Namespaces are one honking great idea—let's do more of those!

The -c flag tells Python you are going to pass it a string containing Python code. Python
then executes the code. When Python executes import this, it prints The Zen of
Python (a message hidden in code like this poem is called an Easter egg). Enter the
function exit() into Bash to quit Python, then copy and paste The Zen of Python
into the file zen.txt.

By default, on Ubuntu, the grep command prints matched words in red in its output, but
on Unix it does not. If you are using a Mac, you can change this by setting the following
environmental variables in Bash:

http://tinyurl.com/z9prphe

$ export GREP_OPTIONS='--color=always'

Remember, setting an environmental variable in Bash is not permanent, so if you exit Bash
you have to set the environmental variables again the next time you open it. You can add
environmental variables to your .profile file to make them permanent.

A Simple Match
The grep command accepts two parameters: a regular expression and the filepath of the
file to search for the pattern defined in the regular expression. The simplest kind of pattern
to match with a regular expression is a simple match, a string of words that matches the same
string of words. To see an example of a simple match, enter the following command in the
directory where you created the file zen.txt:

http://tinyurl.com/jgh3x4c

$ grep Beautiful zen.txt

>> Beautiful is better than ugly.

In the command you executed, the first parameter, Beautiful, is the regular expression,
and the second parameter, zen.txt, is the path to the file to look for the regular expression
in. Bash printed the line Beautiful is better than ugly. with Beautiful in
red because it is the word the regular expression matched.

197Chapter 17. Regular Expressions

If you change the regular expression in the previous example from Beautiful to
beautiful, grep will not match anything:

http://tinyurl.com/j2z6t2r

$ grep beautiful zen.txt

You can ignore case with the flag -i:

http://tinyurl.com/zchmrdq

$ grep -i beautiful zen.txt

>> Beautiful is better than ugly.

By default, grep prints the entire line (of the file) it found a match in. You can add the flag
-o to only print the exact words that match the pattern you passed in:

http://tinyurl.com/zfcdnmx

$ grep -o Beautiful zen.txt

>> Beautiful

You can use regular expressions in Python with its built-in library, re (regular expressions).
The re module comes with a method called findall. You pass in a regular expression as
a parameter, then a string and it returns a list with all the items in the string that the pattern
matches:

198 Part III Introduction to Programming Tools

1
2
3
4
5
6
7
8
9
10
11
12
13

http://tinyurl.com/z9q2286

import re

l = "Beautiful is better than ugly."

matches = re.findall("Beautiful", l)

print(matches)

>> ['Beautiful']

In this example, the findall method found a match and returned a list with the match
(Beautiful) as the first item.

You can ignore case in the findall method by passing in re.IGNORECASE to the findall
method as the third parameter:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

http://tinyurl.com/jzeonne

import re

l = "Beautiful is better than ugly."

matches = re.findall("beautiful",
l,
re.IGNORECASE)

print(matches)

>> ['Beautiful']

199Chapter 17. Regular Expressions

Match Beginning and End
You can create regular expressions that match complex patterns by adding special characters
to them that don't match a character but instead define a rule. For example, you can use the
caret character (^) to create a regular expression that only matches a pattern if the pattern
occurs at the beginning of a line:

http://tinyurl.com/gleyzan

$ grep ^If zen.txt

>> If the implementation is hard to
explain, it's a bad idea.
>> If the implementation is easy to
explain, it may be a good idea.

Similarly, you can use the dollar sign ($) only to match the lines that end with a pattern:

http://tinyurl.com/zkvpc2r

$ grep idea.$ zen.txt

>> If the implementation is hard to explain,
it's a bad idea.
>> If the implementation is easy to explain,
it may be a good idea.

In this case, grep ignored the line Namespaces are one honking great idea
-- let's do more of those! because, although it contains the word idea, it does
not end with it. Here is an example of using the caret symbol (^) in Python (you have to pass
in re.MULTILINE as the third parameter to indall to look for matches on all of the lines
of a multi-line string):

200 Part III Introduction to Programming Tools

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

http://tinyurl.com/zntqzc9

import re

zen = """Although never is
often better than
right now.
If the implementation
is hard to explain,
it's a bad idea.
If the implementation
is easy to explain,
it may be a good
idea. Namespaces
are one honking
great idea -- let's
do more of those!
"""

m = re.findall("^If",
zen,
re.MULTILINE)

print(m)

>> ['If', 'If']

Match Multiple Characters
You can define a pattern that matches multiple characters by putting them inside of brackets
in a regular expression. If you put [abc] in a regular expression, it will match a, b, or c. In
the next example, instead of matching text in your zen.txt file, you are going to look for a
match in a string by piping it to grep:

http://tinyurl.com/jf9qzuz

$ echo Two too. | grep -i t[ow]o

> Two too

201Chapter 17. Regular Expressions

The output of the command echo is passed to grep as input and, therefore, you don't need
to specify the file parameter for grep. The command prints both two and too, because the
regular expression matches a t, followed by an o or a w, followed by an o.

In Python:

1
2
3
4
5
6
7
8
9
10
11
12
13

http://tinyurl.com/hg9sw3u

import re

string = "Two too."

m = re.findall("t[ow]o",
string,
re.IGNORECASE)

print(m)

>> ['Two', 'too']

Match Digits
You can match digits in a string with [[:digit:]]:

http://tinyurl.com/gm8o6gb

$ echo 123 hi 34 hello. | grep [[:digit:]]

>> 123 hi 34 hello.

And \d in Python:

202 Part III Introduction to Programming Tools

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

http://tinyurl.com/z3hr4q8

import re

line = "123?34 hello?"

m = re.findall("\d",
line,
re.IGNORECASE)

print(m)

>> ['1', '2', '3', '3', '4']

Repetition
The asterisk symbol (*) adds repetition to your regular expressions. With an asterisk, "the
preceding item will be matched zero or more times."12 For instance, you can use an asterisk to
match tw followed by any amount of os:

http://tinyurl.com/j8vbwq8

$ echo two twoo not too. | grep -o two*

>> two
>> twoo

In a regular expression, a period matches any character. If you follow a period with an
asterisk, it instructs the regular expression to match any character zero or more times. You
can use a period followed by an asterisk to match everything between two characters:

http://tinyurl.com/h5x6cal

$ echo __hello__there | grep -o __.*__

>> __hello__

203Chapter 17. Regular Expressions

The regular expression __.*__ matches any character between and including the two
double underscores. An asterisk is greedy, which means that it will try to match as much
text as it can. For example, if you add more words with double underscores, the regular
expression from the previous example will match everything from the first underscore to the
last underscore:

http://tinyurl.com/j9v9t24

$ echo __hi__bye__hi__there | grep -o __.*__

>> __hi__bye__hi__

You do not always want to match patterns greedily. You can follow an asterisk with a question
mark to make the regular expression non-greedy. A non-greedy regular expression looks for
the least number of matches possible. In this case, it would stop matching on the first double
underscore it comes across, instead of matching everything between the very first underscore
and the very last underscore. Grep does not have nongreedy matching, but in Python, you
can use a question mark for non-greedy matching:

1
2
3
4
5
6
7
8
9
10
11
12
13
14

http://tinyurl.com/j399sq9

import re

t = "__one__ __two__ __three__"

found = re.findall("__.*?__", t)

for match in found:
print(match)

>> __one__
>> __two__
>> __three__

You can use non-greedy matching in Python to create the game Mad Libs (if you don't
remember Mad Libs, it is a game with a paragraph of text with various words missing that
the players are prompted to fill in):

204 Part III Introduction to Programming Tools

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

http://tinyurl.com/ze6oyua

import re

text = """Giraffes have aroused
the curiosity of __PLURAL_NOUN__
since earliest times. The
giraffe is the tallest of all
living __PLURAL_NOUN__, but
scientists are unable to
explain how it got its long
__PART_OF_THE_BODY__. The
giraffe's tremendous height,
which might reach __NUMBER__
__PLURAL_NOUN__, comes from
it legs and __BODYPART__.
"""

def mad_libs(mls):
"""
:param mls: String
with parts the user
should fill out surrounded
by double underscores.
Underscores cannot
be inside hint e.g., no
__hint_hint__ only
__hint__.
"""
hints = re.findall("__.*?__",

mls)
if hints is not None:

for word in hints:
q = "Enter a {}".format(word)
new = input(q)
mls = mls.replace(word, new, 1)

print('\n')
mls = mls.replace("\n", "")
print(mls)

205Chapter 17. Regular Expressions

42
43
44
45
46

else:
print("invalid mls")

mad_libs(text)

>> enter a __PLURAL_NOUN__

In this example, you use the re.findall method to get a list of all of the words in the
variable text surrounded by double underscores (each one is a hint for the type of word the
user needs to replace). Then, you loop through the list and use each hint to ask the person
using the program to supply a new word. You then create a new string, replacing the hint with
the user-supplied word. Once the loop finishes, you print the new string with all of the words
you collected from the user.

Escaping
You can escape characters (ignore a character's meaning and match it instead) in regular
expressions like you did earlier with strings in Python, by prefixing a character in a regular
expression with a backslash \:

http://tinyurl.com/zkbumfj

$ echo I love $ | grep \\$

>> I love $

Normally, the dollar sign means a match is only valid if it occurs at the end of the line,
however, because you escaped it, your regular expression matches the dollar sign character
instead.

And in Python:

206 Part III Introduction to Programming Tools

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

http://tinyurl.com/zy7pr4l

import re

line = "I love $"

m = re.findall("\\$",
line,
re.IGNORECASE)

print(m)

>> ['$']

Regular Expression Tool
Getting a regular expression to match a pattern is frustrating. Visit http://
theselftaughtprogrammer.io/regex for a list of tools to help you create perfect regular
expressions.

Vocabulary
Regular Expressions: A "sequence of characters that define a search pattern."13

Easter egg: A message hidden in code.
Greedy: A regular expression that is greedy will try to match text as it can.
Non-greedy: A non-greedy regular expression looks for the least number of matches
possible.

Challenges
1. Write a regular expression that matches the word Dutch in The Zen of Python.
2. Come up with a regular expression that matches all the digits in the string Arizona
479, 501, 870. California 209, 213, 650.
3. Create a regular expression that matches any word that starts with any character and is
followed by two o's. Then use Python's re module to match boo and loo in the sentence
The ghost that says boo haunts the loo.

207Chapter 17. Regular Expressions

Solutions: http://tinyurl.com/jmlkvxm.

208

209

Chapter 18. Package Managers
"Every programmer is an author."
―Sercan Leylek

A package manager is a program that installs and manages other programs. They are
useful because you often need to use other programs to create new software. For example,
web developers often use a web framework: a program that helps you build a website.
Programmers use package managers to install web frameworks, as well as a variety of other
programs. In this chapter, you will learn to use the package manager pip.

Packages
A package is software "packaged" for distribution—it includes the files that make up the
actual program, as well as metadata: data about data like the software's name, version
number, and dependencies: the programs a program relies on to run properly. You can use
a package manager to download a package and install it as a program on your computer. The
package manager handles downloading any dependencies the package has.

Pip
In this section, I will show you how to use pip, a package manager for Python, to download
Python packages. Once you've downloaded a package with pip, you can import it as a
module in a Python program. First, check to see if pip is installed on your computer by
opening Bash, or the Command Prompt if you are using Windows, and entering the
command pip3:

http://tinyurl.com/hmookdf

$ pip3

> Usage: pip3 <command> [options] Commands:
install Install packages. download Download
packages. ...

When you enter the command, a list of options should print. Pip comes with Python
when you download it, but it didn't in earlier versions. You will get a "command not
found" error (or something similar, depending on your shell) if pip is not installed on your
computer. Visit http://www.theselftaughtprogrammerio/pip for instructions on installing
it.

210 Part III Introduction to Programming Tools

You can install a new package with pip3 install [package_name]. Pip installs
new packages into a folder in your Python directory called site-packages. You can find a list
of all the Python packages available for download at https://pypi.python.org/pypi. There
are two ways to specify the package you want to download—the package name, or the
package name followed by two equal signs (==) and the version number you want to
download. If you use the package name, pip will download the most recent version of the
package. The second option allows you to download a particular package version, instead
of the most current. Here is how to install Flask, a Python package for creating websites
on Ubuntu and Unix:

http://tinyurl.com/hchso7u

$ sudo pip3 install Flask==0.11.1

>> Password:
>> Successfully installed flask-0.11.1

On Windows, you need to use the command-line as an administrator. Right-click on the
command-prompt icon and select Run as administrator.

Inside the Command Prompt enter:

http://tinyurl.com/hyxm3vt

$ pip3 install Flask==0.11.1

>> Successfully installed flask-0.11.1

With this command, pip installs the Flask module in your computer's site-packages
folder.

Now, you can import the Flask module in a program. Create a new Python file, add the
following code, and run the program:

211Chapter 18. Package Managers

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

http://tinyurl.com/h59sdyu

from flask import Flask

app = Flask(__name__)

@app.route('/')
def index():

return "Hello, World!"

app.run(port='8000')

>> * Running on http://127.0.0.1:8000/ (Press CTRL+C to
quit)

Now, navigate to http://127.0.0.1:8000/ in your web browser, and you should see a website
that says Hello, World!

The Flask module allows you to create a web server and a website quickly. Visit
http://flask.pocoo.org/docs/0.11/tutorial to learn more about how this example works.
You can view the packages you've installed with the command pip3 freeze:

http://tinyurl.com/zxgcqeh

$ pip3 freeze

>> Flask==0.11.11
…

212 Part III Introduction to Programming Tools

Finally, you can uninstall a program with pip3 uninstall [package_name]. Uninstall
Flask with the following command:

http://tinyurl.com/ht8mleo

$ pip3 uninstall flask
…

>> Proceed (y/n)? y …

Flask is now uninstalled, which you can verify with the command pip3 freeze.

Virtual Environments
Eventually, you will want to install your Python packages into a virtual environment
instead of installing all of your packages into site-packages. Virtual environments
allow you to keep the Python packages for your different programming projects separate.
You can learn more about virtual environments at http://docs.python-guide.org/en/latest/
dev/virtualenvs/.

Vocabulary
Package manager: A program that installs and manages other programs.
Web framework: A program that helps you build a website.
Package: Software "packaged" for distribution.
Metadata: Data about data.
Dependencies: The programs a program relies on to run properly.
Apt-get: A package manager that comes with Ubuntu.
Pip: A package manager for Python.
$PYTHONPATH: Python looks for modules in a list of folders stored in an environmental
variable called $PYTHONPATH.
Site-packages: A folder in $PYTHONPATH. This folder is where pip installs packages.
PyPI: A website that hosts Python packages.
Virtual environment: You use a virtual environment to keep the Python packages for your
different programming projects separate.

Challenge
1. Find a package on PyPI (https://pypi.python.org) and download it with pip.

Solution: http://tinyurl.com/h96qbw2.

213

Chapter 19. Version Control
"I object to doing things that computers can do."
—Olin Shivers

Writing software is a team sport. When you are working on a project with another person
(or an entire team), you all need to be able to make changes to the codebase—the folders
and files that make up your software, and you need to keep those changes in sync. You could
periodically email each other with your changes and combine multiple different versions
yourself, but that would be tedious.

Also, what would happen if you both made changes to the same part of the project? How
do you decide whose changes to use? These are the kinds of problems a version control
system solves. A version control system is a program designed to help you easily collaborate
on projects with other programmers.

Git and SVN are two popular version control systems. Typically, you use a version control
system in conjunction with a service that stores your software in the cloud. In this chapter, you
will use Git to put software on GitHub, a website that stores your code on the cloud.

Repositories
A repository is a data structure created by a version control system, like Git, that keeps track
of all the changes in your programming project. A data structure is a way of organizing
and storing information: lists and dictionaries are examples of data structures (you will learn
more about data structures in Part IV). When you see a repository, it will look like a directory
with files in it. You will use Git to interact with the data structure that keeps track of the
project's changes.

When you are working on a project managed by Git, there will be multiple repositories
(usually one for each person working on the project). Typically, everybody working on the
project has a repository on their computer called a local repository, which keeps track
of all the changes they make to the project. There is also a central repository, hosted on
a website like GitHub, that all the local repositories communicate with to stay in sync with
each other (each repository is completely separate). A programmer working on the project
can update the central repository with the changes they've made in their local repository,
and they can update their local repository with the newest changes other programmers have
made to the central repository. If you are working on a project with one other programmer,
your setup will look like this:

214 Part III Introduction to Programming Tools

You can create a new central repository from GitHub's website (or the command-line). Once
you create a central repository, you can use Git to create a local repository that communicates
with it.

Getting Started
If GitHub changes the layout of their website, the instructions in this section will change. If
that happens, I will provide new instructions at http://theselftaughtprogrammer.io/git. To
get started, you need to create a GitHub account at https://github.com/join. To create a
new repository on GitHub, login to your GitHub account (once you have created it) and click
on the + button at the top right corner of the screen. Click New repository from the
drop-down menu. Give the repository the name hangman. Select the Public option, and
check the box Initialize the repository with a README. Now, click Create
repository.

On GitHub, hit the button in the top right corner and select Your profile.

215Chapter 19. Version Control

You will see the name of your repository: hangman. Click on it. This part of the website is
your central repository. You will see a button that says Clone Or Download. When you
click on it, you will see a link. Save this link.

Before you can precede, you need to install Git. You can find installation instructions at
https://www.git-scm.com/book/en/v2/Getting-Started-Installing-Git.

Once you have installed Git, you can use it from the command-line. Type git into the
command-line:

http://tinyurl.com/gs9d5hf
$ git

>> usage: git [--version] [--help] [-C <path>] [-c
name=value] ...

If your output looks like this example, you've correctly installed Git.

Now you can use the link you found earlier to download a local repository to your computer
with the command git clone [repository_url]. The repository will download
in whatever directory you issue the command from. Copy the link, or press the copy link to
clipboard button, and pass it to the git clone command:

http://tinyurl.com/hvmq98m

$ git clone [repository_url]

>> Cloning into 'hangman'... remote: Counting objects:
3, done. remote: Total 3 (delta 0), reused 0 (delta 0),
packreused 0 Unpacking objects: 100% (3/3), done. Checking
connectivity... done.

Use ls to verify the local repository downloaded:

http://tinyurl.com/gp4o9qv

$ ls
>> hangman

You should see a directory called hangman. This directory is your local repository.

216 Part III Introduction to Programming Tools

Pushing and Pulling
There are two main things you can do with Git. The first is updating your central repository
with changes from your local repository, called pushing. The second is updating your local
repository with new changes from your central repository, called pulling.

The command git remote -v (a common flag that usually prints extra information and
stands for verbose) prints the URL of the central repository your local repository is pushing
to and pulling from. Enter your hangman directory and use the git remote command:

http://tinyurl.com/jscq6pj

$ cd hangman
$ git remote -v

>> origin [your_url]/hangman.git (fetch)
>> origin [your_url]/hangman.git (push)

The first line of output is the URL for the central repository your project will pull data from,
and the second line is the URL for the central repository your project will push data to.
Typically, you will push to and pull from the same central repository so that the URLs will
be the same.

217Chapter 19. Version Control

Pushing Example
In this section, you are going to make a change to the local hangman repository you created
and cloned to your computer, then push that change to your central repository hosted on
GitHub.

Move your Python file into the hangman directory with the code from the challenge you
completed at the end of Part I. Your local repository now has a file that does not exist in
your central repository—it is out of sync with your central repository. You can resolve this by
pushing the change you made in your local repository to your central repository.

You push changes from your local repository to your central repository in three steps. First,
you stage your files: you tell Git which modified files you want to push to your central
repository.

The command git status shows the current state of your project in relation to your
repository, so you can decide what files to stage. The git status command prints the files
in your local repository that differ from your central repository. When you unstage a file it is
in red. When you stage a file, it is in green. Make sure you are in your hangman directory
and enter the command git status:

http://tinyurl.com/jvcr59w

$ git status

>> On branch master Your branch is up-to-date with 'origin/
master'. Untracked files: (use "git add <file>..." to include
in what will be committed)

hangman.py

You should see the file hangman.py in red. You can stage a file with the command git
add [file]:

http://tinyurl.com/hncnyz9

$ git add hangman.py

Now use the command git status to confirm you staged the file:

218 Part III Introduction to Programming Tools

http://tinyurl.com/jeuug7j

$ git status

>> On branch master Your branch is up-to-date with 'origin/
master'. Changes to be committed: (use "git reset HEAD
<file>..." to unstage)

new file: hangman.py

The file hangman.py is green because you staged it.

You can unstage a file without making changes to your central repository with the syntax git
reset [file_path]. Unstage hangman.py with:

http://tinyurl.com/hh6xxvw

$ git reset hangman.py.

Confirm it was unstaged with git status:

>> On branch master Your branch is up-to-date with 'origin/
master'. Untracked files: (use "git add <file>..." to include
in what will be committed)

hangman.py

Stage it again:

http://tinyurl.com/gowe7hp

$ git add hangman.py
$ git status

>> On branch master Your branch is up-to-date with 'origin/
master'. Changes to be committed: (use "git reset HEAD
<file>..." to unstage)

new file: hangman.py

219Chapter 19. Version Control

Once you've staged the files you want to update your central repository with, you are ready
to move to the next step, committing your files—giving a command to Git to record the
changes you made in your local repository. You can commit your files with the syntax git
commit -m [your_message]. This command creates a commit: a version of your
project that Git saves. The -m flag means you are going to add a message to your commit to
help you remember what changes you are making and why (this message is like a comment).
In the next step, you are going to push your changes to your central repository on GitHub,
where you will be able to view your message:

http://tinyurl.com/gmn92p6

$ git commit -m "my first commit"

>> 1 file changed, 1 insertion(+) create mode 100644
hangman.py

Once you've committed your files, you are ready for the final step. You can now push your
changes to your central repository with the command git push origin master:

http://tinyurl.com/hy98yq9

$ git push origin master

>> 1 file changed, 1 insertion(+) create mode 100644
hangman.py Corys-MacBook-Pro:hangman coryalthoff$ git push
origin master Counting objects: 3, done. Delta compression
using up to 4 threads. Compressing objects: 100% (2/2),
done. Writing objects: 100% (3/3), 306 bytes | 0 bytes/s,
done. Total 3 (delta 0), reused 0 (delta 0) To https://
github.com/coryalthoff/hangman.git f5d44da..b0dab51 master
-> master

After you enter your username and password into the command-line, the git program will
push your changes to GitHub. If you look at your central repository on GitHub's website, you
will see hangman.py, as well as the message you made in your commit.

220 Part III Introduction to Programming Tools

Pulling Example
In this section, you are going to update your local repository by pulling the changes from your
central repository. You will need to do this whenever you want to update your local repository
with the changes another programmer made to the central repository.

Go to your central repository and press the button Create new file. Create a file called
new.py and then press the button Commit new file. This file is not yet in your local
repository, so your local repository is out of sync with your central repository. You can update
your local repository with changes from your central repository with the command git
pull origin master:

http://tinyurl.com/gqf2xue

$ git pull origin master

>> remote: Counting objects: 3, done. remote: Compressing
objects: 100% (2/2), done. remote: Total 3 (delta 0),
reused 0 (delta 0), pack-reused 0 Unpacking objects: 100%
(3/3), done. From https://github.com/coryalthoff/hangman
b0dab51..8e032f5 master -> origin/master Updating
b0dab51..8e032f5 Fast-forward new.py | 1 + 1 file changed,
1 insertion(+) create mode 100644 new.py

221Chapter 19. Version Control

Git applied the changes from your central repository to your local repository. The new.py
file you created in your central repository should now be in your local repository. Confirm
with ls:

>> README.md hangman.py new.py

Reverting Versions
Git saves your project every time you commit a file. With Git, you can revert to any previous
commit—you can "rewind" your project. For example, you can return your project back to
a commit you made last week. All of your files and folders will be the same as they were last
week. Then you can immediately jump forward to a more recent commit. Each commit has
a commit number: a unique sequence of characters that Git uses to identify a commit.

You can view your project's history of commits with the command git log, which prints
all of your commits:

http://tinyurl.com/h2m7ahs

$ git log

>> commit 8e032f54d383e5b7fc640a3686067ca14fa8b43f Author:
Cory Althoff <coryedwardalthoff@gmail.com> Date: Thu Dec 8
16:20:03 2016 -0800

Create new.py
commit b0dab51849965144d78de21002464dc0f9297fdc Author:
Cory Althoff <coryalthoff@Corys-MacBook-Pro.local> Date:
Thu Dec 8 16:12:10 2016 -0800

my first commit
commit f5d44dab1418191f6c2bbfd4a2b2fcf74ef5a68f Author:
Cory Althoff <coryedwardalthoff@gmail.com> Date: Thu Dec 8
15:53:25 2016 -0800 Initial commit

You should see three commits. Your first commit was when you created the central
repository. Your second commit was when you updated the central repository with your
hangman.py file. Your third commit was when you created the file new.py. Each

$ ls

222 Part III Introduction to Programming Tools

commit has a commit number. You can switch your project to another commit by passing
a commit number to the command git checkout. In this example, I could revert my
project to what it looked like when I first created it with the command g it checkout
f5d44dab1418191f6c2bbfd4a2b2fcf74ef5a68f.

diff
The command git diff shows you the difference between a file in your local repository
versus your central repository. Create a new file called hello_world.py in your local
repository, and add the code print("Hello, World!") to it.

Now stage the file:

http://tinyurl.com/h6msygd

$ git add hello_world.py

Make sure everything looks right:

http://tinyurl.com/zg4d8vd

$ git status

>> Changes to be committed: (use "git reset HEAD <file>..."
to unstage) new file: hello_world.py

And commit it:

http://tinyurl.com/ztcm8zs

$ git commit -m "adding new file"

>> 1 file changed, 1 insertion(+) create mode 100644
hello_world.py

Push your changes to your central repository:

223Chapter 19. Version Control

http://tinyurl.com/zay2vct

$ git push origin master

>> Counting objects: 3, done. Delta compression using
up to 4 threads. Compressing objects: 100% (2/2), done.
Writing objects: 100% (3/3), 383 bytes | 0 bytes/s, done.
Total 3 (delta 0), reused 0 (delta 0) To https://github.
com/coryalthoff/hangman.git 8e032f5..6f679b1 master ->
master

Now add print("Hello!") to the second line of the hello_world.py file in your
local repository. Now, that file is different from the file in your central repository. Enter the
command git diff to see the difference:

http://tinyurl.com/znvj9r8

$ git diff hello_world.py

>> diff --git a/hello_world.py b/hello_world.py index
b376c99..83f9007 100644 --- a/hello_world.py +++
b/hello_world.py -1 +1,2 print("Print, Hello World!")
+print("Hello!")

Git highlights print("Hello!") in green because it is a new line of code. The addition
(+) operator means this line is new. If you had removed code, the deleted code would be in
red and preceded by a subtraction operator (-).

Next Steps
In this chapter, I covered the features of Git you will use most frequently. Once you've mastered
the basics, I recommend you spend time learning about Git's more advanced features like
branching and merging at http://theselftaughtprogrammer.io/git.

Vocabulary
Codebase: The folders and files that make up your software.
Version control system: A program designed to let you easily collaborate on projects with
other programmers.

224 Part III Introduction to Programming Tools

Git: A popular version control system.
SVN: A popular version control system.
GitHub: A website that stores your code on the cloud.
Repository: A data structure created by a version control system, like Git, that keeps track
of the changes in your programming project.
Data structure: A way of organizing and storing information. Lists and dictionaries are
examples of data structures.
Local repository: The repository on your computer.
Central repository: A repository hosted on a website like GitHub that all of the local
repositories communicate with to stay in sync with each other.
Pushing: Updating your central repository with changes from your local repository.
Pulling: Updating your local repository with changes from your central repository.
Staging: Telling Git which files (with modifications) you want to push to your central
repository.
Committing: Giving a command that tells Git to record the changes you made in your
repository.
Commit: A version of your project that Git saves.
Commit number: A unique sequence of characters Git uses to identify a commit.

Challenges
1. Create a new repository on GitHub. Put all your Python files from the exercises you've
completed so far into one directory on your computer and push them to your new repository.

225

Chapter 20. Bringing It All Together
"The magic of myth and legend has come true in our time. One types the correct incantation
on a keyboard, and a display screen comes to life, showing things that never were nor could
be..."
—Frederick Brooks

In this chapter, you will see how powerful programming is by building a web scraper: a
program that extracts data from a website. Once you can build a web scraper, you have the
ability to collect data from the largest collection of information in existence. The power
of web scrapers, and how easy they are to build, is one of the reasons I got hooked on
programming, and I hope it has the same effect on you.

HTML
Before you build a web scraper, you need a quick primer on HTML: hypertext markup
language. HTML is one of the fundamental technologies programmers build websites with,
along with CSS and JavaScript. HTML is a language that gives a website structure. HTML is
made up of tags a web browser uses to layout web pages. You can build an entire website with
HTML. It won't be interactive or look very good, because JavaScript is what makes websites
interactive, and CSS is what gives them style, but it will be a website. Here is a website that
displays the text Hello, World!

http://tinyurl.com/jptzkvp

<!--This is a comment in HTML.
Save this file as index.html-->
<!-- http://tinyurl.com/h3bjuov -->

<html lang="en">
<head>

<meta charset="UTF-8">
<title>My Website</title>

</head>
<body>

Hello, World!

here

</body>
</html>

226 Part III Introduction to Programming Tools

Save this HTML into a file. Open the file with your web browser by clicking on the file (you
may have to right-click and change the default program to open the file with a web browser
like Chrome). Once you've opened the file with your web browser, you will see a website that
says Hello World! with a link to Google.

Your web browser uses the different HTML tags in your HTML file to display this website.
An HTML tag (tag for short) is like a programming keyword—it tells your browser to do
something. Most tags have a beginning tag and closing tag, often with text in between. For
example, your browser displays the text in between the <title> </title> tags in
the tab of your browser. You can have tags within tags; everything in between <head></
head> is metadata about the web page, whereas everything in between <body></body>
makes up the actual site. Together, the <a> tags create a link. Tags can hold data. For
example, href="https://www.google.com" inside of the <a> tag lets the browser
know what website to link to. There is a lot more to HTML, but with this knowledge you are
ready to build your first web scraper.

Scrape Google News
In this section, you are going to build a web scraper that fetches all of the stories from Google
News by extracting all the <a> tags from Google News' HTML. Google News uses
these tags to link to the different websites that make up the site, so in addition to some extra
data, you will collect all the URLs for the stories Google News is displaying. You will use the
BeautifulSoup module to parse Google News' HTML. Parsing means taking a format
like HTML and using a programming language to give it structure. For example, turning the
data into an object. To get started, use the follow command to install the BeautifulSoup
module on Ubuntu and Unix:

http://tinyurl.com/z4fzfzf

$ sudo pip3 install beautifulsoup4==4.4.1

>> Successfully installed beautifulsoup4-4.4.1

227Chapter 20. Bringing It All Together

And on Windows (open the command-line as administrator):

http://tinyurl.com/hk3kxgr

$ pip3 install beautifulsoup4==4.4.1

>> Successfully installed beautifulsoup4-4.4.1

Python has a built-in module, named urllib, for working with URLs. Add the following
code to a new Python file:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

http://tinyurl.com/jmgyar8

import urllib.request
from bs4 import BeautifulSoup

class Scraper:
def __init__(self,

site):
self.site = site

def scrape(self):
pass

The __init__ method takes a website to scrape from as a parameter. Later, you will pass
in "https://news.google.com/" as a parameter. The Scraper class has a method
called scrape you will call whenever you want to scrape data from the site you passed in.

Add the following code to your scrape method:

1
2
3
4
5
6

http://tinyurl.com/h5eywoa

def scrape(self):
r = urllib.request.urlopen(self.site)
html = r.read()

228 Part III Introduction to Programming Tools

The urlopen() function makes a request to a website and returns a Response object
that has its HTML stored in it, along with additional data. The function response.
read() returns the HTML from the Response object. All of the HTML from the
website is in the variable html.

Now you are ready to parse the HTML. Add a new line of code in the scrape function
that creates a BeautifulSoup object, and pass in the html variable and the string
"html.parser" (because you are parsing HTML) as a parameter:

1
2
3
4
5
6
7
8

http://tinyurl.com/hvjulxh

def scrape(self):
r = urllib.request.urlopen(self.site)
html = r.read()
parser = "html.parser"
sp = BeautifulSoup(html, parser)

The BeautifulSoup object does all the hard work and parses the HTML. Now you can
add code to the scrape function that calls the method find_all on the BeautifulSoup
object. Pass in "a" as a parameter (which tells the function to look for <a> tags) and
the method will return all of the URLs the website links to in the HTML you downloaded:

1
2
3
4
5
6
7
8
9
10
11
12
13
14

http://tinyurl.com/zwrxjjk

def scrape(self):
r = urllib.request.urlopen(self.site)
html = r.read()
parser = "html.parser"
sp = BeautifulSoup(html, parser)
for tag in sp.find_all("a"):

url = tag.get("href")
if url is None:

continue
if "html" in url:

print("\n" + url)

The find_all method returns an iterable containing the tag objects it found. Each time
around the for-loop, the variable tag is assigned the value of a new Tag object. Each
Tag object has many different instance variables, but you just want the value of the href

229Chapter 20. Bringing It All Together

instance variable, which contains each URL. You can get it by calling the method get and
passing in "href" as a parameter. Finally, you check that the variable URL contains data;
that it has the string "html" in it (you don't want to print internal links); and if it does, you
print it. Here is the complete web scraper:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

http://tinyurl.com/j55s7hm

import urllib.request
from bs4 import BeautifulSoup

class Scraper:
def __init__(self, site):

self.site = site

def scrape(self):
r = urllib.request.urlopen(self.site)
html = r.read()
parser = "html.parser"
sp = BeautifulSoup(html, parser)
for tag in sp.find_all("a"):

url = tag.get("href")
if url is None:

continue
if "html" in url:

print("\n" + url)

news = "https://news.google.com/"
Scraper(news).scrape()

When you run your program, the output should look similar to this:

https://www.washingtonpost.com/world/national-security/in-foreign-bribery-cases-
leniency-offered-to-companies-that-turn-over-employees/2016/04/05/d7a24d94-fb43-
11e5-9140-e61d062438bb_story.html?utm_term=.aab581385443

230 Part III Introduction to Programming Tools

http://www.appeal-democrat.com/news/unit-apartment-complex-proposed-in-
marysville/article_bd6ea9f2-fac3-11e5-bfaf-4fbe11089e5a.html

http://www.appeal-democrat.com/news/injuries-from-yuba-city-bar-violence-
hospitalize-groom-to-be/article_03e46648-f54b-11e5-96b3-5bf32bfbf2b5.html

Now that you can collect Google News' headlines, the possibilities are limitless. You could
write a program to analyze the most used words in the headlines. You could build a program
to analyze the sentiment of the headlines, and see if it has any correlation with the stock
market. With web scraping, all the information in the world is yours for the taking, and I hope
that excites you as much as it does me.

Vocabulary
Web scraper: A program that extracts data from a website.
HTML: A language that gives a website structure.
HTML Tag: Like a programming keyword—it tells your browser to do something.
Parse: Parsing means taking a format like HTML and using a programming language to
give it structure. For example, turning the data into an object.

Challenge
1. Modify your scraper to save the headlines in a file.

 Challenge solution: http://tinyurl.com/gkv6fuh.

231

232

Part IV
Introduction to Computer Science

233

Chapter 21. Data Structures
"I will, in fact, claim that the difference between a bad programmer and a good one is whether
he considers his code or his data structures more important. Bad programmers worry about
the code. Good programmers worry about data structures and their relationships."
—Linus Torvalds

Data Structures
A data structure is a format used to store and organize information. Data structures are
fundamental to programming, and most programming languages come with them built-in.
You already know how to use several of Python's built-in data structures, such as lists, tuples,
and dictionaries. In this chapter, you will learn how to create two more data structures: stacks
and queues.

Stacks
A stack is a data structure. Like a list, you can add and remove items from a stack, except
unlike a list, you can only add and remove the last item. If you have the list [1, 2, 3], you
can remove any of the items in it. If you have a stack that is the same, you can only remove
the last item in it, 3. If you remove the 3, your stack looks like [1, 2]. Now you can remove
the 2. Once you've removed the 2, you can remove the 1, and the stack is empty. Removing
an item from a stack is called popping. If you put 1 back on the stack, it looks like [1].
If you put a two onto the stack, it looks like [1, 2]. Putting an item onto a stack is called
pushing. This kind of data structure, where the last item put in is the first item taken out, is
called a last-in-first-out data structure (LIFO).

You can think of a LIFO like a stack of dishes. If you stack five dishes on top of each other,
you would have to remove all the other dishes to get to the one on the bottom of the stack.
Think of every piece of data in a stack like a dish, to access it you have to pull out the data
at the top.

In this section, you are going to build a stack. Python has a library with both of the data
structures I cover in this chapter, but building your own will show you how they work. The
stack will have five methods: is_empty, push, pop, and size. The method is_
empty returns True if your stack is empty and False otherwise. push adds an item to
the top of your stack. pop removes and returns the top item from your stack. peek returns
the top item in the stack, but does not remove it. size returns an integer representing the
number of items in your stack. Here is a stack implemented in Python:

234 Part IV Introduction to Computer Science

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

http://tinyurl.com/zk24ps6

class Stack:
def __init__(self):

self.items = []

def is_empty(self):
return self.items == []

def push(self, item):
self.items.append(item)

def pop(self):
return self.items.pop()

def peek(self):
last = len(self.items)-1
return self.items[last]

def size(self):
return len(self.items)

If you create a new stack, it will be empty, and the is_empty method will return True:

1
2
3
4
5

http://tinyurl.com/jfybm4v

stack = Stack()
print(stack.is_empty())

>> True

When you add a new item to the stack, is_empty returns False:

235Chapter 21. Data Structures

1
2
3
4
5
6

http://tinyurl.com/zsexcal

stack = Stack()
stack.push(1)
print(stack.is_empty())

>> False

Call the pop method to remove an item from the stack, and is_empty once again returns
True:

1
2
3
4
5
6
7
8

http://tinyurl.com/j72kswr

stack = Stack()
stack.push(1)
item = stack.pop()
print(item)
print(stack.is_empty())

>> 1
>> True

Finally, you can take a peek at a stack's contents and get its size:

1
2
3
4
5
6
7
8
9
10
11
12

http://tinyurl.com/zle7sno

stack = Stack()

for i in range(0, 6):
stack.push(i)

print(stack.peek())
print(stack.size())

>> 5
>> 6

236 Part IV Introduction to Computer Science

Reversing a String with a Stack
A stack can reverse an iterable, because whatever you put on a stack comes off in reverse
order. In this section, you will solve a common programming interview problem—reversing
a string using a stack by first putting it in on a stack, then taking it off:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

http://tinyurl.com/zoosvqg

class Stack:
def __init__(self):

self.items = []

def is_empty(self):
return self.items == []

def push(self, item):
self.items.append(item)

def pop(self):
return self.items.pop()

def peek(self):
last = len(self.items)-1
return self.items[last]

def size(self):
return len(self.items)

stack = Stack()
for c in "Hello":

stack.push(c)

237Chapter 21. Data Structures

34
35
36
37
38
39
40
41
42

reverse = ""

for i in range(len(stack.items)):
reverse += stack.pop()

print(reverse)

>> olleH

First, you went through each character in the string "Hello", and put it in a stack. Then you
iterated through the stack. You took each item off the stack and into the variable reverse.
Once the iteration is complete, the original word is in reverse, and your program prints
olleH.

Queues
A queue is another data structure. A queue is also like a list; you can add and remove items
from it. A queue is also like a stack because you can only add and remove items in a certain
order. Unlike a stack, where the first item put in is the last out, a queue is a firstin- first-out
data structure (FIFO): the first item added is the first item taken out.

Think of a FIFO data structure as a line of people waiting to buy movie tickets. The first
person in line is the first person to get tickets, the second person in line is the second person
to get tickets, and so on.

In this section, you will build a queue with four methods: enqueue, dequeue, is_
empty, and size. enqueue adds a new item to the queue; dequeue removes an item
from the queue; is_empty returns True if the queue is empty and False otherwise;
and size returns the number of items in the queue:

238 Part IV Introduction to Computer Science

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22

http://tinyurl.com/zrg24hj

class Queue:
def __init__(self):

self.items = []

def is_empty(self):
return self.items == []

def enqueue(self, item):
self.items.insert(0, item)

def dequeue(self):
return self.items.pop()

def size(self):
return len(self.items)

If you create a new, empty queue, the is_empty method returns True:

1
2
3
4
5

http://tinyurl.com/j3ck9jl

a_queue = Queue()
print(a_queue.is_empty())

>> True

Add items and check the queue's size:

239Chapter 21. Data Structures

1
2
3
4
5
6
7
8
9
10
11

http://tinyurl.com/jzjrg8s

a_queue = Queue()

for i in range(5):
a_queue.enqueue(i)

print(a_queue.size())

>> 5

Remove each item from the queue:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

http://tinyurl.com/jazkh8b

a_queue = Queue()

for i in range(5):
a_queue.enqueue(i)

for i in range(5):
print(a_queue.dequeue())

print()

print(a_queue.size())

>> 0
>> 1
>> 2
>> 3
>> 4
>>
>> 0

240 Part IV Introduction to Computer Science

Ticket Queue
A queue can simulate people waiting in line to buy tickets for a movie:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

http://tinyurl.com/jnw56zx

import time
import random

class Queue:
def __init__(self):

self.items = []

def is_empty(self):
return self.items == []

def enqueue(self, item):
self.items.insert(0, item)

def dequeue(self):
return self.items.pop()

def size(self):
return len(self.items)

def simulate_line(self, till_show, max_time):
pq = Queue()
tix_sold = []

for i in range(100):
pq.enqueue("person" + str(i))

241Chapter 21. Data Structures

37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

t_end = time.time() + till_show
now = time.time()
while now < t_end and not pq.is_empty():

now = time.time()
r = random.randint(0, max_time)
time.sleep(r)
person = pq.dequeue()
print(person)
tix_sold.append(person)

return tix_sold

queue = Queue()
sold = queue.simulate_line(5, 1)
print(sold)

>> person0
…
>> ['person0', 'person1', 'person2']

First, you created a function called simulate_line, which simulates selling tickets to a
line of people. The function accepts two parameters: till_show and max_time. The
first parameter is an integer, representing the number of seconds until the show starts and
there is no time left to buy tickets. The second parameter is also an integer, representing the
longest amount of time (in seconds) it takes for a person to buy a ticket.

In the function, you create a new, empty queue and an empty list. The list will keep track of
the people who purchased a ticket. Next, you fill the queue with one hundred strings, starting
with "person0" and ending with "person99". Each string in the queue represents a
person in line waiting to buy a ticket.

The built-in time module has a function called time. It returns a float that represents the
number of seconds it has been since the epoch, a point in time (January 1st, 1970) used as
a reference. If I call the time function right now, it returns 1481849664.256039, the
number of seconds since the epoch. If in one second I call it again, the float the function
returns will be incremented by 1.

242 Part IV Introduction to Computer Science

The variable t_end finds the result of the time function plus the number of seconds passed
in as the variable till_show. The combination of the two creates a point in the future.

Your while-loop runs until either the time function returns a result greater than
t_end, or the queue is empty.

Next, you stop Python for a random amount of time to simulate that each ticket sale takes a
different amount of time. You do this by calling the sleep function in the built-in time
module to stop Python from doing anything for a random number of seconds between 0
and max_time.

After the pause caused by the sleep function, you remove a string representing a person
from the queue and place it into the tix_sold list, which represents that the person
bought a ticket.

The result of your code is a function that can sell tickets to a line of people, selling more or
fewer tickets depending on the parameters passed in and random chance.

Vocabulary
Data structure: A format used to store and organize information.
Popping: Removing an item from a stack.
Pushing: Putting an item onto a stack.
Last-in- irst-out data structure: A data structure where the last item put in is the first
item taken out.
LIFO: Last-in-first-out
Stack: A last-in-first-out data structure data structure.
First-in- irst-out data structure: A data structure where the first item added is the first
item taken out.
FIFO: First-in-first-out Queue: A first-in-first-out data structure.
Epoch: A point in time used as a reference.

Challenges
1. Reverse the string "yesterday" using a stack.
2. Use a stack to create a new list with the items in the following list reversed: [1, 2, 3,
4, 5].

Solutions: http://tinyurl.com/j7d7nx2.

243

Chapter 22. Algorithms
"An algorithm is like a recipe."
—Waseem Latif

This chapter is a light introduction to algorithms. An algorithm is a series of steps that can
be followed to solve a problem. The problem could be searching a list or printing the lyrics to
"99 Bottles of Beer on the Wall."

FizzBuzz
It's finally time to learn to solve FizzBuzz, the popular interview question designed to eliminate
candidates: Write a program that prints the numbers from 1 to 100. But for multiples of three
print "Fizz" instead of the number, and for the multiples of five print "Buzz." For multiples
of both three and five print "FizzBuzz."

To solve this problem, you need a way to check if a number is a multiple of three, a multiple
of five, both, or neither. If a number is a multiple of three, if you divide it by three, there is
no remainder. The same applies to five. The modulo operator (%) returns the remainder.
You can solve this problem by iterating through the numbers and checking if each number is
divisible by both three and five, just three, just five, or neither:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

http://tinyurl.com/jroprmn

def fizz_buzz():
for i in range(1, 101):

if i % 3 == 0 and i % 5 == 0:
print("FizzBuzz")

elif i % 3 == 0:
print("Fizz")

elif i % 5 == 0:
print("Buzz")

else:
print(i)

fizz_buzz()

244 Part IV Introduction to Computer Science

>> 1
>> 2
>> Fizz
…

You start by iterating through numbers 1 to 100. Then, you check if the number is divisible
by 3 and 5. It is important to do this first, because if a number is divisible by both, you
need to print FizzBuzz and continue to the next iteration of the loop. If you checked if
a number was divisible by just 3 or 5 first, and found a number that was, you cannot print
Fizz or Buzz and continue to the next iteration of the loop, because the number could still
be divisible by 3 and 5, in which case printing Fizz or Buzz is incorrect; you need to print
FizzBuzz.

Once you've checked if a number is divisible by 3 and 5, the order of these two tests is no
longer important, because you know it is not divisible by both. If the number is divisible by 3
or 5, you can stop the algorithm and print Fizz or Buzz. If a number makes it past the first
three conditions, you know it is not divisible by 3, 5, or both, and you can print the number.

Sequential Search
A search algorithm finds information in a data structure like a list. A sequential search
is a simple search algorithm that checks each item in a data structure to see if the item
matches what it is looking for.

If you were ever playing cards and looking for a specific card in the deck, you probably did
a sequential search to find it. You went through each card in the deck one by one, and if the
card was not the one you were looking for, you moved on to the next card. When you finally
came to the card you wanted, you stopped. If you made it through the entire deck without
finding the card, you also stopped, because you realized the card wasn't there. Here is an
example of a sequential search in Python:

245Chapter 22. Algorithms

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

http://tinyurl.com/zer9esp

def ss(number_list, n):
found = False
for i in number_list:

if i == n:
found = True
break

return found

numbers = range(0, 100)
s1 = ss(numbers, 2)
print(s1)
s2 = ss(numbers, 202)
print(s2)

>> True
>> False

First, you set the variable found to False. This variable keeps track of whether or not the
algorithm has found the number you are looking for. Then, you loop through every number
in the list and check if it is that number. If it is, you set found to True, exit the loop, and
return the variable found, which is True.

If you do not find the number you are looking for, you continue to the next number in the list.
If you get through the entire list, you return the variable found. found will be False if
the number isn't in the list.

Palindrome
A palindrome is a word spelled the same way forward and backward. You can write an
algorithm that checks if a word is a palindrome by reversing all the letters in the word and
testing if the reversed word and the original word are the same. If they are, the word is a
palindrome:

246 Part IV Introduction to Computer Science

1
2
3
4
5
6
7
8
9
10

http://tinyurl.com/jffr7pr

def palindrome(word):
word = word.lower()
return word[::-1] == word

print(palindrome("Mother"))
print(palindrome("Mom"))

>> False
>> True

The lower method removes uppercase characters from the word you are testing. Python
treats M and m as different characters, and you want them treated as the same character.

The code word[::-1] reverses the word. [::-1] is Python's syntax for returning a slice
of an entire iterable in reverse. You reverse the word so you can compare it to the original.
If they are the same, the function returns True, because the word is a palindrome. If not, it
returns False.

Anagram
An anagram is a word created by rearranging the letters of another word. The word iceman
is an anagram of cinema, because you can rearrange the letters in either word to form the
other. You can determine if two words are anagrams by sorting the letters in each word
alphabetically and testing if they are the same:

1
2
3
4
5
6
7
8
9
10
11

http://tinyurl.com/hxplj3z

def anagram(w1, w2):
w1 = w1.lower()
w2 = w2.lower()
return sorted(w1) == sorted(w2)

print(anagram("iceman", "cinema"))
print(anagram("leaf", "tree"))

247Chapter 22. Algorithms

>> True
>> False

First, you call the lower method on both words so that case does not affect the result. Then,
you pass both words into Python's sorted method. The sorted method returns the words
sorted in alphabetical order. Finally, you compare the results. If the sorted words are the
same, your algorithm returns True. Otherwise it returns False.

Count Character Occurrences
In this section, you are going to write an algorithm that returns the number of times each
character occurs in a string. The algorithm will iterate character by character through the
string, and keep track of how many times each character occurs in a dictionary:

1
2
3
4
5
6
7
8
9
10
11
12
13
14

http://tinyurl.com/zknqlde

def count_characters(string):
count_dict = {}
for c in string:

if c in count_dict:
count_dict[c] += 1

else:
count_dict[c] = 1

print(count_dict)

count_characters("Dynasty")

>> {'D': 1, 't': 1, 'n': 1, 'a': 1, 's': 1, 'y': 2}

In this algorithm, you iterate through each character in a string passed in as the parameter
string. If the character is already in the dictionary count_dict, you increment the
value of the character by 1.

Otherwise, you add the character to the dictionary and set its value to 1. By the end of the
for-loop, count_dict contains a key-value pair for each character in the string. The
value of each key is the number of times it occurred in the string.

248 Part IV Introduction to Computer Science

Recursion
Recursion is a method of solving problems by breaking the problem up into smaller and
smaller pieces until it can be easily solved. So far, you've solved problems using iterative
algorithms. Iterative algorithms solve problems by repeating steps over and over, typically
using a loop. Recursive algorithms rely on functions that call themselves. Any problem
you can solve iteratively can be solved recursively; however, sometimes a recursive algorithm
is a more elegant solution.

You write a recursive algorithm inside of a function. The function must have a base case:
a condition that ends a recursive algorithm to stop it from continuing forever. Inside the
function, the function calls itself. Each time the function calls itself, it moves closer to the base
case. Eventually, the base case condition is satisfied, the problem is solved, and the function
stops calling itself. An algorithm that follows these rules satisfies the three laws of recursion:

1. A recursive algorithm must have a base case.
2. A recursive algorithm must change its state and move toward the base case.
3. A recursive algorithm must call itself, recursively.14

Here is a recursive algorithm that prints the lyrics to the popular folk song "99 Bottles of Beer
on the Wall":

249Chapter 22. Algorithms

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

http://tinyurl.com/z49qe4s

def bottles_of_beer(bob):
""" Prints 99 Bottle

of Beer on the
Wall lyrics.
:param bob: Must
be a positive
integer.

"""
if bob < 1:

print("""No more
bottles
of beer
on the wall.
No more
bottles of
beer.""")

return
tmp = bob
bob -= 1
print("""{} bottles of

beer on the
wall. {} bottles
of beer. Take one
down, pass it
around, {} bottles
of beer on the
wall.

""".format(tmp,
tmp,
bob))

bottles_of_beer(bob)

bottles_of_beer(99)

250 Part IV Introduction to Computer Science

>> 99 bottles of beer on the wall. 99 bottles of beer.
Take one down, pass it around, 98 bottles of beer on the
wall. 98 bottles of beer on the wall. 98 bottles of beer.
Take one down, pass it around, 97 bottles of beer on the wall.
…
No more bottles of beer on the wall. No more bottles of beer.

In this example, the first law of recursion was satisfied with the following base case:

1
2
3
4
5
6
7
8
9
10
11
12

http://tinyurl.com/h4k3ytt

if bob < 1:
print("""No more

bottles
of beer
on the wall.
No more
bottles of
beer.""")

return

When the variable bob becomes less than 1, the function returns and stops calling itself.

The line bob -= 1 satisfies the second law of recursion because decrementing the variable
bob moves toward your base case. In this example, you passed the number 99 to your
function as a parameter. The base case is satisfied when the variable bob is less than 1, and
every time the function calls itself, it moves toward its base case.

The final law of recursion is satisfied with:

1
2
3
4

http://tinyurl.com/j7zwm8t

bottles_of_beer(bob)

This line ensures that as long as the base case is not satisfied, your function will call itself. Each
time the function calls itself, it passes itself a parameter that has been decremented by 1, and
thus moves toward the base case. The first time the function calls itself with this line, it will
pass itself 98 as a parameter, then 97, then 96, until finally, it passes itself a parameter less
than 1, which satisfies the base case and No more bottles of beer on the wall.

251Chapter 22. Algorithms

No more bottles of beer. prints. The function then hits the return keyword,
which stops the algorithm.

Recursion is notoriously one of the toughest concepts for new programmers to grasp. If it
is confusing to you at first, don't worry—keep practicing. And remember: to understand
recursion; first you must understand recursion.

Vocabulary
Algorithm: A series of steps that can be followed to solve a problem.
Search algorithm: An algorithm that finds information in a data structure (like a list).
Sequential search: A simple search algorithm for finding information in a data structure
that checks each item in it to see if it matches what it is looking for.
Palindrome: A word spelled the same forward and backward.
Anagram: A word created by rearranging the letters of another word.
Recursion: A method of solving problems by breaking the problem up into smaller and
smaller pieces until it can be easily solved.
Iterative algorithm: Iterative algorithms solve problems by repeating steps over and over,
typically using a loop.
Recursive algorithm: Recursive algorithms solve problems using functions that call
themselves.
Base case: A condition that ends a recursive algorithm.

Challenge
1. Sign up for an account at http://leetcode.com, and try to solve three of their easy-level
algorithm problems.

252

Part V
Landing a Job

253

Chapter 23. Best Programming
Practices
"Always code as if the guy who ends up maintaining your code will be a violent psychopath who
knows where you live."
—John Woods

Production code is the code in a product people use. When you put software into
production, it means putting it out in the world. In this chapter, I cover a few general
programming principles that will help you write production-ready code. Many of these
principles originated in The Pragmatic Programmer by Andy Hunt and Dave Thomas, a book
that dramatically improved the quality of my code.

Write Code as a Last Resort
Your job as a software engineer is to write as little code as possible. When you have a problem,
your first thought should not be "How can I solve this?" It should be, "Has someone else
solved this problem already, and can I use their solution?" If you are trying to solve a common
problem, chances are someone else has already figured it out. Start by looking online for a
solution. Only after you've determined no one else has already solved the problem should you
start solving it yourself.

DRY
DRY is a programming principle that stands for Don't Repeat Yourself. Do not repeat the
same, or nearly the same, code in a program. Instead, put the code into one function that can
handle multiple situations.

Orthogonality
Orthogonality is another important programming principle popularized by The
Pragmatic Programmer. Hunt and Thomas explain, "In computing, the term has
come to signify a kind of independence or decoupling. Two or more things are orthogonal
if changes in one do not affect any of the others. In a well-designed system, the database
code will be orthogonal to the user interface: you can change the interface without affecting
the database, and swap databases without changing the interface."15 Put this in practice by
remembering as much as possible that "a should not affect b." If you have two modules
—module a and module b—module a should not make changes to things in module

254 Part V Landing a Job

b, and vice versa. If you design a system where a affects b; which affects c; which affects d;
things quickly spiral out of control and the system becomes unmanageable.

Every Piece of Data Should Have One Representation
When you have a piece of data, you should only store it in one location. For example, say you
are building software that works with phone numbers. If you have two functions that both
need to use a list of area codes, make sure there is only one list of area codes in your program.
You should not have two duplicated lists of area codes, one for each function. Instead, you
should have a global variable that holds the area codes. Or better yet, store the information
in a file or a database.

The problem with duplicating data is at some point you will need to change it, and you will
have to remember to alter the data in every place you duplicated it. If you change your area
codes list in one function and forget the other function also uses the data, your program will
not work properly. You can avoid this by only having one representation for every piece of
data.

Functions Should Do One Thing
Every function you write should do one thing, and one thing only. If you find your functions
getting too long, ask yourself if it is accomplishing more than one task. Limiting functions
to accomplishing one task offers several advantages. Your code will be easier to read because
the name of your function will describe exactly what it does. If your code isn't working
it will be easier to debug because every function is responsible for a specific task, so you
can quickly isolate and diagnose the function that isn't working. Best summarized by many
famous programmers, "So much complexity in software comes from trying to make one thing
do two things."

If It's Taking Too Long, You Are Probably Making a Mistake
If you are not working on something obviously complex, like working with large amounts of
data, and your program is taking a very long time to load, assume you are doing something
wrong.

Do Things the Best Way the First Time
If you are programming and you think, "I know there is a better way of doing this, but I'm in
the middle of coding and don't want to stop and figure out how to do it better." Don't keep
coding. Stop. Do it better.

255Chapter 23. Best Programming Practices

Follow Conventions
Taking time to learn the conventions of the new programming language will help you read
code written in the new language faster. PEP 8 is a set of guidelines for writing Python code,
and you should read it. It includes the rules for extending Python code to new lines. It's
available at https://www.python.org/dev/peps/pep-0008/.

Use a Powerful IDE
Thus far, you've been using IDLE, the IDE that comes with Python, to write your code. But
IDLE is just one of many IDEs available, and I do not recommend using it long term because
it is not very powerful. For example, if you open up a Python project in a better IDE, there
will be different tabs for each Python file. In IDLE you have to open a new window for each
file, which is tedious and makes it difficult to navigate back and forth between files.

I use an IDE called PyCharm created by JetBrains. They offer a free version as well as a
professional version. I made a list of the features of PyCharm that save me the most time:

1. If you would like to see the definition of a variable, function, or object, PyCharm has a
shortcut that jumps to the the code that defined it (even if it is in a different file). There is also
a shortcut to jump back to the page you started from.

2. PyCharm has a feature that saves local history, which has dramatically improved my
productivity. PyCharm automatically saves a new version of your project every time it
changes. You can use PyCharm as local version control system without having to push to a
repository. You don't have to do anything; it happens automatically. Before I knew about this
feature, I would often solve a problem, change the solution, and then decide I wanted to go
back to the original solution. If I didn't push the initial solution to GitHub, it was long gone,
and I would have to rewrite it again. With this feature, you can jump back in time 10 minutes
and reload your project exactly how it was. If you change your mind again, you can jump
back and forth between different solutions as many times as you want.

3. In your workflow, you are probably copying and pasting code a lot. In PyCharm, instead
of copying and pasting, you can move code up and down on the page you are on.

4. PyCharm supports version control systems like Git and SVN. Instead of going to the
command-line, you can use Git from PyCharm. The fewer trips you have to make back and
forth between your IDE and the command-line, the more productive you will be.

5. PyCharm has a built-in command-line and Python Shell.

256 Part V Landing a Job

6. PyCharm has a built-in debugger. A debugger is a program that allows you to stop the
execution of your code and move through your program line by line so you can see the values
of the variables in your code at different parts of your program.

If you are interested in learning to use PyCharm, JetBrains has a tutorial available at https://
www.jetbrains.com/help/pycharm/2016.1/quick-start-guide.html.

Logging
Logging is the practice of recording data when your software runs. You can use logging
to help debug your program and gain additional insight into what happened when your
program ran. Python comes with a logging module that lets you log to the console or a file.

When something goes wrong in your program, you don't want it to go unnoticed—you should
log information about what happened to review later. Logging is also useful for collecting and
analyzing data. For example, you might set up a web server to log data— including the date
and time—every time it receives a request. You could store all of your logs in a database, and
create another program to analyze the data and create a graph displaying the times of day
people visit your website.

The blogger Henrik Warne writes, "One of the differences between a great programmer and
a bad programmer is that a great programmer adds logging and tools that make it easy to
debug the program when things fail." You can learn how to use Python's logging module
at https://docs.python.org/3/howto/logging.html.

Testing
Testing a program means checking that the program "meets the requirements that guided
its design and development, responds correctly to all kinds of inputs, performs its functions
within an acceptable time, is sufficiently usable, can be installed and run in its intended
environments, and achieves the general result its stakeholders desire."16 To test their programs,
programmers write more programs.

In a production environment, testing is not optional. You should consider every program you
intend to put into production incomplete until you have written tests for it. However, if you
write a quick program you are never going to use again, testing might be a waste of time.
If you are writing a program that other people are going to use, you should write tests. As
several famous programmers have said, "Untested code is broken code." You can learn how
to use Python's unittest module at https://docs.python.org/3/library/unittest.html.

257Chapter 23. Best Programming Practices

Code Reviews
In a code review someone reads your code and gives feedback. You should do as many code
reviews as you can—especially as a self-taught programmer. Even if you follow all the best
practices laid out in this chapter, you are going to do things incorrectly. You need someone
with experience to read over your code and tell you the mistakes you are making, so you can
fix them.

Code Review is a website where you can get code reviews from a community of
programmers. Anyone can go on Code Review and post their code. Other members of
the Stack Exchange community review your code, give you feedback about what you did
well, and offer helpful suggestions on how you can improve. You can visit Code Review at
http://codereview.stackexchange.com/.

Security
Security is an easy subject for the self-taught programmer to ignore. You probably won't be
asked about security in interviews, and security is not important for the programs you write
while you are learning to program. However, once you get your first programming job, you
are directly responsible for the security of the code you write. In this section, I provide some
tips to keep your code safe.

Earlier, you learned to use sudo to issue a command as the root user. Never run a program
from the command-line using sudo if you don't have to because a hacker will have root access
if they compromise the program. You should also disable root logins if you are managing a
server. Every hacker is aware there is a root account, so it is an easy target when attacking a
system.

Always assume user input is malicious. Several kinds of malicious attacks rely on exploiting
programs that accept user input, so you should also assume all user input is malicious and
program accordingly.

Another strategy for keeping your software secure is to minimize your attack surface—
the different areas of your program where attackers could extract data or attack your
system. By making your attack area as small as possible, you reduce the likelihood of
vulnerabilities in your program. Some strategies for minimizing your attack surface: avoid
storing confidential data if you don't have to, give users the lowest level of access you
can, use as few third-party libraries as possible (the less code, the less amount of possible
exploits), and get rid of features that are no longer being used (less code, less exploits).

258 Part V Landing a Job

Avoiding logging in as the root user on your system, not trusting user input, and minimizing
your attack surface are important steps to making sure your programs are secure. But these
are just starting points. You should always try to think like a hacker. How would a hacker
exploit your code? Thinking like this can help you find vulnerabilities you otherwise would
overlook. There is a lot more to learn about security than I can cover in this book, so always
be thinking and learning about it. Bruce Schneier said it best "Security is a state of mind."

Vocabulary
Production code: The code in a product people use.
Production: When you put software into production, it means putting it out in the world.
DRY: A programming principle that stands for Don't Repeat Yourself.
Orthogonality: "In computing, the term has come to signify a kind of independence or
decoupling. Two or more things are orthogonal if changes in one do not affect any of the
others. In a well-designed system, the database code will be orthogonal to the user interface:
you can change the interface without affecting the database, and swap databases without
changing the interface."17

Debugger: A debugger is a program that allows you to stop the execution of your code and
move through your program line by line so you can see the values of the variables in your
code at different parts of your program.
Logging: The practice of recording data when your software runs.
Testing: Checking that the program "meets the requirements that guided its design and
development, responds correctly to all kinds of inputs, performs its functions within an
acceptable time, is sufficiently usable, can be installed and run in its intended environments,
and achieves the general result its stakeholders desire."18

Code review: When someone reads your code and gives you feedback.
Attack surface: The different areas of your program where attackers could extract data or
attack your system.

259

Chapter 24. Your First Programming
Job
"Beware of ‘the real world.' A speaker's appeal to it is always an invitation not to challenge
his tacit assumptions."
— Edsger W. Dijkstra

The final part of this book is dedicated to helping you with your career. Getting your first
programming job requires extra effort, but if you follow my advice, you should have no
problem. Luckily, once you land your first programming job and get some experience, when
it comes time to look for your next job, recruiters will be reaching out to you.

Choose a Path
When you apply for a programming job, you will be expected to know a particular set of
technologies, depending on the domain the job is in. While it's fine to be a generalist (a
programmer who dabbles in everything) while you are learning to program, and it is possible
to get a job as a generalist programmer, you should probably focus on an area of programming
you enjoy and become an expert in it. Focusing on one programming path will make getting
a job easier.

Web and mobile development are two of the most popular programming paths. There are
two specialties within them: front end and the back end. The front end of an application is
the part you can see—like the GUI of a web app. The back end is what you can't see—the
part that provides the front end with data. The titles for open programming jobs will read
something like "Python Backend Programmer," which means they are looking for someone
who programs the backend of a website and is familiar with Python. The job description will
list the technologies the ideal candidate will be familiar with, along with any additional skills
needed.

Some companies have a team devoted to the front end and another to the back end. Other
companies only hire full stack developers—programmers that can work on both the front and
back ends; however, this only applies to companies building websites or apps.

There are many other programming areas you can work in, such as security, platform
engineering, and data science. Job descriptions on sites listing programming jobs are a
good place to learn more about the requirements of different areas of programming. The
Python Job Board, found at https://www.python.org/jobs, is a good place to start. Read the

260 Part V Landing a Job

requirements for a few jobs, as well as the technologies they use, to get an idea what you need
to learn to be competitive for the type of job you want.

Getting Initial Experience
Before you are hired for your first programming job, you will need experience. But how do
you get programming experience if no one will hire you without it? There are a few ways to
solve this problem. You can get involved in open source by starting an open source project or
contributing to the thousands of open source projects on GitHub.

Another option is to do freelance work. Create a profile on a site similar to Upwork, and start
applying for small programming jobs. I recommend finding someone you know who needs
some programming work done, have them sign up for an Upwork account, then officially
hire you there so they can leave you a great review for your work. Until you have at least
one good review on a site like Upwork, it is hard to get hired for jobs. Once people see that
you've successfully completed at least one job, getting hired becomes easier, because you've
established some credibility.

Getting an Interview
Once you've gained programming experience through either open source or freelance
work, it's time to start interviewing. I've found the most efficient way to get an interview is
to focus on LinkedIn. If you don't have a LinkedIn account, create one to start networking
with potential employers. Write a summary about yourself at the top of your profile, and
make sure to highlight your programming skills. For example, a lot of people say something
like "Programming Languages: Python, JavaScript" at the top of their profile, which helps
lead recruiters searching for those keywords to them. Make sure to put your open source or
freelancing experience as your most recent job.

Once your profile is complete, start connecting with technical recruiters—there are lots of
technical recruiters on LinkedIn. They are always looking for new talent and will be eager to
connect with you. Once they accept your invitation, reach out and ask if they are hiring for
any open positions.

The Interview
If a recruiter thinks you are a good fit for the role they are hiring for, they will send you
a message on LinkedIn asking to set up a phone screen. The phone screen will be with
the recruiter, so it is usually non-technical, although I've had recruiters ask me technical
questions they've memorized the answer to during first interviews. The conversation is about

261Chapter 24. Your First Programming Job

the technologies you know, your previous experience, and figuring out if you would fit in with
the company's culture.

If you do well, you will advance to the second round—a technical phone screen—where
you speak with members of the engineering team. They will ask you the same questions
from the first interview. However, this time the questions are accompanied by a technical test
over the phone. The engineers will give you the address of a website where they have posted
programming questions, and ask you to solve them.

If you make it past the second round, you will usually have a third interview. The third
interview is typically in person at the company's office. Like the first two, you meet with
different engineers on the team. They ask about your skills and experience and administer
more technical tests. Sometimes you stay for lunch to see how you interact with the team.
The third round is where the famous whiteboard coding tests happen. If the company you
are interviewing for does whiteboarding, you will be asked to solve several programming
problems. I recommend buying a whiteboard and practicing beforehand because solving a
programming problem on a whiteboard is much harder than solving it on a computer.

Hacking the Interview
The majority of programming interviews focus on two subjects—data structures and
algorithms. To pass your programming interview, you know exactly what you must do— get
very good at these two specific areas of computer science. Fortunately, this will help you to
become a better programmer.

You can narrow down the questions to focus on even further by thinking about the interview
from the interviewer's perspective. Think about the situation your interviewer is in; they say
software is never complete, and it's true. Your interviewer most likely has a lot of work and
doesn't want to dedicate a lot of time interviewing candidates. Are they going to spend their
valuable time coming up with original programming questions? Probably not. They are going
to Google "programming interview questions," and ask one of the first ones they find. This
situation leads to the same interview questions coming up over and over again—and there are
some great resources out there to practice them! I highly recommend using LeetCode—I've
found every question anyone has ever asked me in a programming interview there.

262

263

Chapter 25. Working on a Team
"You can't have great software without a great team, and most software teams behave like
dysfunctional families."
— Jim McCarthy

Coming from a self-taught background, you will be used to programming alone. Once you
join a company, you need to learn how to work on a team. Even if you start a company,
eventually you will hire additional programmers, at which point you will need to learn to
work as a team. Programming is a team sport, and like any team sport, you need to get along
with your teammates. This chapter provides some tips for successfully working in a team
environment.

Master the Basics
When a company hires you, you are expected to be competent in the skills covered in this
book. It is not enough to simply read this book—you need to master the concepts as well.
Your teammates will get frustrated if they are constantly helping you with the basics.

Don’t Ask What You Can Google
As a new, self-taught member of a programming team, you will have plenty to learn and need
to ask a lot of questions. Asking questions is a great way to learn, but you want to make sure
you are asking the right questions. Only ask a question if you’ve spent at least five minutes
Googling the answer yourself. If you ask too many questions you could have easily figured out
on your own, you will annoy your teammates.

Changing Code
By reading this book, you’ve demonstrated you are the type of person who is constantly
looking to improve. Unfortunately, not everyone on your team will share your enthusiasm for
becoming a better programmer. Many programmers don’t have the desire to keep learning—
they are fine doing things suboptimally.

Bad code is especially prevalent in startups, where shipping code quickly is often more
important than shipping high-quality code. If you find yourself in this situation, tread lightly.
Changing someone’s code may hurt their ego. Even worse, if you spend a lot of time fixing
other people’s code, you will not have enough time to contribute to new projects, and it may
look like you are not working hard enough. The best way to avoid this environment is to
carefully question any company you are interviewing with about their engineering culture.

264 Part V Landing a Job

If you still find yourself in this situation, it is best to listen to Edward Yourdon, "If you think
your management doesn't know what it's doing or that your organization turns out low-
quality software crap that embarrasses you, then leave."

Imposter Syndrome
Everyone who programs feels overwhelmed sometimes, and no matter how hard you work
there are going to be things you don't know. As a self-taught programmer, it is especially easy
to feel inadequate because someone asked you to do something you've never heard of, or
you feel like there are many concepts in computer science you still do not understand. These
things happen to everyone—not just you.

I was surprised when my friend with a master's degree in computer science from Stanford told
me he felt this way as well. He said everyone in his program dealt with imposter syndrome.
He noticed they reacted one of two ways: they either stayed humble and were willing to
admit when they didn't know something—and worked to learn it, or they pretended they
knew everything (when they didn't) and stifled their learning. Remember you got to where
you are by working hard, and it's OK if you don't know everything, nobody does. Just stay
humble, and relentlessly study anything you don't understand, and you will be unstoppable.

265

Chapter 26. Further Learning
"The best programmers are not marginally better than merely good ones. They are an order-
of-magnitude better, measured by whatever standard: conceptual creativity, speed, ingenuity of
design, or problem-solving ability."
— Randall E. Stross

The article "ABC: Always Be Coding" by David Byttow gives great advice on how to get a job as
a software engineer. The title says it all—always be coding. You can find the article at https://
medium.com/always-be-coding/abc-always-be-coding-d5f8051afce2#.2hjho0px7. If you
combine ABC with a new acronym I made up—ABL—always be learning—you are sure to
have an exceptional career. In this chapter, I am going to review some of the programming
resources I've found helpful.

The Classics
There are a few programming books that are considered must-reads. The Pragmatic Programmer
by Andy Hunt and Dave Thomas; Design Patterns by Erich Gamma, John Vlissides, Ralph
Johnson, and Richard Helm (design patterns are an important subject I didn't get a chance
to cover) ; Code Complete by Steve McConnell; Compilers: Principles, Techniques, and Tools by
Alfred Aho, Jeffrey Ullman, Monica S. Lam, and Ravi Sethi; and Introduction to Algorithms
by the MIT Press. I also highly recommend Problem Solving with Data Structures and Algorithms,
a free, interactive, excellent introduction to algorithms by Bradley N. Miller and David L.
Ranum and much easier to understand than MIT's Introduction to Algorithms.

Online Classes
Online coding classes are another way to improve your programming skills. You can find all
of my class recommendations at http://theselftaughtprogrammer.io/courses.

Hacker News
Hacker News is a platform for user-submitted news hosted on the technology incubator Y
Combinator's website, found at https://news.ycombinator.com. It will help you keep up to
date with the newest trends and technologies.

266

267

Chapter 27. Next Steps
"Love the little trade which thou hast learned, and be content therewith."
—Marcus Aurelius

First of all—thank you for purchasing this book. I hope it's helped you become a better
programmer. Now that you're finished, it's time for you to get down to business. Where do
you go from here? Data structures and algorithms. Get on LeetCode and practice those
algorithms. Then practice them some more! In this chapter, I give some final thoughts on
how you can continue to improve as a programmer (once you finished practicing writing
algorithms.

Find a Mentor
A mentor will help take your programming skills to the next level. One of the hard things
about learning to program is that there are so many things you can do suboptimally without
knowing it. I mentioned earlier you can help combat this by doing code reviews. A mentor
can do code reviews with you to help improve your coding process, recommend books, and
teach you programming concepts you don't understand.

Strive to Go Deep
There is a concept in programming called a "black box," which refers to something you use
but do not understand how it works. When you first start programming, everything is a black
box. One of the best ways to get better at programming is to open up every black box you
find and try to understand how it works. One of my friends told me it was a major "aha"
moment when he realized the command-line itself is a program. Opening up a black box is
what I call going deep.

Writing this book helped me go deep. There were certain concepts I thought I understood,
only to find out I couldn't explain them. I had to go deep. Don't stop at just one answer, read
all the explanations on a topic you can find. Ask questions and read differing opinions online.

Another way to go deep is to build things you want to understand better. Having trouble
understanding version control? Build a simple version control system in your free time.
Taking the time to do a project like that is well worth the investment—it will improve your
understanding of whatever you are struggling with.

268 Part V Landing a Job

Other Advice
I once came across a forum topic discussing different ways to become a better programmer.
The top voted answer was surprising: Do things other than programming. I've found this
to be true—reading books like The Talent Code by Daniel Coyle has made me a better
programmer because he lays out exactly what you need to do to master any skill. Keep your
eye out for things outside of programming you can bring to your programming game.

The last piece of advice I will leave you with is to spend as much time as you can reading
other people's code. It is one of the best ways to improve as a programmer. When you are
learning, make sure to strike a balance between writing and reading code. Reading other
people's code is going to be difficult at first, but it is important because you can learn so much
from other programmers.

I hope you enjoyed reading this book as much as I enjoyed writing it. Please feel free to
email me at cory@theselftaughtprogrammer.io for any reason. I also have a programming
newsletter you can sign up for at http://theselftaughtprogrammer.io and a Facebook group
located at https://www.facebook.com/groups/selftaughtprogrammers where you can
get in touch with me and a community of other people learning to program. If you like
this book, please consider leaving a review on Amazon at https://www.amazon.com/dp/
B01M01YDQA#customerReviews, it helps get this book in the hands of more people, and
I appreciate every review I receive. Best of luck on the rest of your journey.

269

Acknowledgements
I want to thank everyone that helped make this book possible. My parents, Abby and James
Althoff, were so supportive during the entire process. My Dad went through every page of
the book and gave me amazing feedback. I couldn’t have made this happen without him.
My girlfriend, Lauren Wordell, put up with me working on this book at all times. I want
to thank my incredibly talented illustrator Blake Bowers; my editors Steve Bush, Madeline
Luce, Pam Walatka and Lawrence Sanfilippo; and my friend Antoine Sindu—several of
our discussions made it into the book. I also want to thank Randee Fenner, who supported
the project on Kickstarter and introduced me to Pam. Shoutout to my former boss Anzar
Afaq, who was incredibly supportive when I joined his team at eBay. A big thank you to
all of the beta readers who read the book early and gave me feedback. Finally, I want to
thank everyone on Kickstarter that backed this project, especially Jin Chun, Sunny Lee,
and Leigh Forrest. Thank you all so much!

270

271

Citations
1.	 https://www.infoworld.com/article/2908474/application-development/stack-overflow-

survey-finds-nearly-half-have-no-degree-in-computer-science.html

2.	 http://www.wsj.com/articles/computer-programming-is-a-trade-lets-act-like-it-
1407109947?mod=e2fb

3.	 https://en.wikipedia.org/wiki/Syntax

4.	 https://en.wikipedia.org/wiki/Syntax

5.	 https://www.tutorialspoint.com/python/python_files_io.htm

6.	 https://maryrosecook.com/blog/post/a-practical-introduction-to-functionalprogram-
ming

7.	 http://whatis.techtarget.com/definition/abstraction

8.	 http://stackoverflow.com/questions/1031273/what-is-polymorphism-what-is-it-forand-
how-is-it-used

9.	 http://stackoverflow.com/questions/1031273/what-is-polymorphism-what-is-it-forand-
how-is-it-used

10.	http://whatis.techtarget.com/definition/abstraction

11.	https://en.wikipedia.org/wiki/Regular_expression

12.	http://tldp.org/LDP/Bash-Beginners-Guide/html/sect_04_01.html

13.	https://en.wikipedia.org/wiki/Regular_expression

14.	http://interactivepython.org/runestone/static/pythonds/Recursion/TheThreeLawsof-
Recursion.html

15.	The Pragmatic Programmer

16.	https://en.wikipedia.org/wiki/Software_testing

272

17.	https://students.cs.byu.edu/~cs340ta/fall2017/notes/06-DesignPrinciples/OLD/More-
DesignPrinciples.pdf

18.	https://en.wikipedia.org/wiki/Software_testing

273

Index

A
abs, 167
abstraction, 151, 154, 162
abstractions, 154
aldous, 100
algorithm, 243-245, 247-248, 251
algorithms, 2, 243, 248, 251, 261,

265, 267
althoff, 221, 269
amazon, 184, 268
anagram, 246, 251
anagrams, 246
append, 69, 81-83, 107, 113-114,

126, 140, 165, 174, 179, 234,
236, 241

appends, 113, 165, 174
arithmetic, 22, 26, 29, 44
assembly, 7, 11
assignment, 21, 43, 74
asterisk, 202-203
aurelius, 267
aws, 184

B
backend, 259
backslash, 97, 205
backslashes, 97, 123
bash, 183-187, 189-192, 196
bashapp, 184
beautifulsoup, 226-229
binary, 7, 11
bits, 10
bool, 19, 43
boolean, 24, 43
booleans, 19
bowers, 269
bush, 269
bytes, 219, 223

C
caller, 56, 148, 153
callers, 154
camelcase, 143
camus, 98, 100
career, 3, 259, 265
char, 133, 135

274

characteristics, 14, 154, 162
characters, 247
classname, 144
clause, 41-42, 44, 62
clauses, 41-42
clients, 153
code, 35, 108, 124
codebase, 213, 223
codereview, 257
commandline, 183-184
compilers, 265
complexity, 141, 254
computer, 1-3, 5-8, 10-11, 18, 119,

123, 128-129, 132, 145, 183-187,
190, 192, 209-210, 213, 215,
217, 224, 232, 261, 264

computers, 5, 8, 213
concatenation, 89, 101
conditional, 35, 44
conditionally, 35, 44
constants, 20
container, 67, 70, 73, 76, 85, 126
containers, 67, 80, 85
convention, 47, 49, 65, 143
conventions, 153, 255
cory, 221, 268
coryalthoff, 25, 186, 189, 191,

219-221, 223
courier, 14
coyle, 137, 268
css, 225
csv, 126-129
cunningham, 171

D
data, 2, 7, 18-21, 23, 43, 52, 54,

64-65, 67, 69, 75-76, 85, 106,
123, 126, 128-129, 139, 141-143,
151-155, 162, 164-165, 183, 186,
190, 193, 195, 209, 212-213,
216, 224-230, 233, 237, 242,
244, 251, 254-259, 261, 265, 267

database, 7, 253-254, 256, 258
databases, 253, 258
debug, 254, 256
debugger, 256, 258
dec, 9, 221
decimal, 19, 43
declarations, 21
decoupling, 253, 258
decrement, 22-23, 44
decremented, 109, 250
decrementing, 22, 250
decrements, 109
def, 48-51, 54, 56-60, 64, 120, 132,

135, 140, 142-148, 151-153,
157-161, 164-168, 171-172,
174-176, 178-180, 204, 211,
227-229, 234, 236, 238, 240,
243, 245-247, 249

del, 79
delimiter, 126-128
delta, 215, 219-220, 223
dependencies, 209, 212
dequeue, 237-241
developers, 5, 64, 209, 259
dict, 76-79, 247

275

dictionaries, 67, 75-77, 85, 213,
224, 233

dictionary, 76-80, 82, 84-85, 104,
114, 247

diff, 222-223
directories, 185-187, 189, 193
directory, 124, 185-193, 195-196,

210, 213, 215-217, 224
division, 26-29, 61
docs, 117, 211-212, 256
docstring, 64, 66
docstrings, 64-66
documentation, 184
dorsey, 3

E
ebay, 1, 3, 269
elif, 35, 38-40, 42, 44, 140, 243
ellipses, 14
elsestatement, 35-36, 38, 44, 54-55
empty, 233-238, 240-242
encapsulate, 54
encapsulation, 151, 153, 162
enqueue, 237-240
epoch, 241-242
equality, 32
equations, 29
error, 9, 25-26, 44, 61-62, 66, 87,

96-97, 117
errors, 25-26, 60, 141-142
evaluation, 34, 110

excel, 126-128
exception, 25-26, 44, 53, 56, 58-59,

62, 64, 66, 70-71, 74, 79, 88, 95,
117

exceptions, 25-26, 62-63, 66
execute, 7, 11, 17, 35-37, 42, 44,

47, 62, 65, 67, 103, 108, 185
executed, 35-36, 38-39, 62, 103,

111, 196
executes, 37-38, 62, 103, 108-109,

111, 114, 120, 125, 144, 183,
192, 196

executing, 242
execution, 256, 258
exponentiation, 28
exponents, 29
expression, 29-31, 34-38, 44,

108-110, 114, 167-168, 172,
195-197, 199-203, 205-206

expressions, 2, 29, 32-34, 37-39,
44, 183, 195, 197, 199, 202,
205-206

F
faulkner, 91-92
fenner, 269
ferriss, 4
fifo, 237, 242
file, 125, 217
filepath, 125, 196
filepaths, 123

276

finder, 8
fitzgerald, 83-84, 89
fizzbuzz, 2, 5, 243-244
flask, 210-212
float, 19, 24, 43, 52-53, 63, 66,

155, 241
floating-point, 19, 28, 43, 52-53,

154-155
folder, 119-120, 123, 185, 192, 210,

212
folders, 123, 187, 212-213, 221,

223
forloop, 103-105, 107-108, 111,

113, 156, 228, 247
forum, 137, 268
framework, 209, 212
frameworks, 209
freelance, 260
freelancing, 260
function, 47-61, 64-68, 72,

107-108, 117-118, 121, 123-124,
127, 132-134, 141-144, 149,
154-155, 167, 169, 177, 184,
196, 228, 241-242, 246, 248,
250-251, 253-255

functional, 139, 141-142, 149
functionality, 47, 54-56, 87, 117,

121, 141

G
git, 5, 213-224, 255
github, 213-214, 217, 219, 224,

255, 260
greedy, 203, 206
grep, 195-197, 199-203, 205

H
hangman, 131-135, 214-221, 223
hemingway, 83-84, 100
href, 225-226, 228-229
html, 117, 225-230, 256
huxley, 98, 100
hypertext, 225

I
ide, 255
ides, 255
ifelse, 35-36, 38, 41, 44, 54-55
ifstatement, 35-38, 41-42, 44
immutable, 73, 78, 85, 89, 153
implementation, 153, 159, 162,

183, 195, 199-200

277

import, 15, 117-121, 123, 127-128,
174, 177, 195-196, 198, 200-204,
206, 209-211, 227, 229, 240

imported, 117
importing, 117, 119
increment, 22, 43, 106, 134, 142,

147, 247
incremented, 87, 106, 142, 241
incrementing, 22, 141
indent, 17, 26, 41
indentation, 14, 36, 41
indentationerror, 26
indented, 13, 17, 41, 44, 49
index, 69-70, 74, 81, 85, 87-89,

95-100, 110, 114, 133-135, 152,
172-173, 211, 223, 225

indexerror, 70, 88
infinite, 109, 114
inherit, 156, 162
inheritance, 151, 156, 158, 162
inherited, 156, 159, 162, 166
inherits, 156-159, 162, 166
init, 143-148, 151-153, 157-161,

164-168, 171, 174-175, 177-179,
227, 229, 234, 236, 238, 240

initialize, 144, 174, 214
initializing, 149
insertion, 219-220, 222
installation, 215
installpython, 8
instance, 29, 97, 100, 121, 143-149,

151-153, 161, 163-164, 169,
172-173, 175, 177, 183, 202,
228-229

instances, 143, 149, 164
instantiate, 145

instantiating, 144, 149
int, 19, 21, 43, 52-56, 61-64, 155
integer, 19, 23, 45, 52-54, 61-62,

65-66, 78, 105, 113-114, 118,
154, 167, 172, 174, 233, 241,
249

integers, 19, 54, 107-108, 118, 152,
155

interface, 5, 142, 154-156, 162,
183, 192, 253, 258

internet, 7-8, 26, 183
interviewer, 261
ints, 171, 178
iskeyword, 119
items, 68, 72-74, 77, 88, 93, 98,

100, 104-105, 107, 129, 152-153,
172, 174, 197, 233-234, 236-238,
240, 242

iterable, 69, 85, 87-88, 98-100,
103-106, 108, 112-114, 118, 125,
127, 228, 236, 246

iterables, 69, 85, 87, 106
iterated, 106, 237
iterates, 112-113
iterating, 103, 106, 114, 243-244
iteration, 111, 114, 237, 244
iterative, 248, 251
iteratively, 248

278

J
java, 151
javascript, 17, 18, 225, 260
jetbrains, 255-256
jobs, 4, 259-260

K
kafka, 79, 88-89
keyword, 17, 32-34, 36, 38, 41, 44,

49, 60, 71, 75, 78-80, 96,
109-111, 114, 119-120, 158, 168,
226, 230, 251

keywords, 17, 24, 34-35, 43, 62,
260

kickstarter, 269

L
lambda, 141
lawrence, 269
leetcode, 251, 261, 267
len, 51-52, 72, 132-133, 135, 148,

151, 157-160, 164-165, 169, 174,
176, 179-180, 234, 236-237, 238,
240

length, 15, 51, 133, 158, 165

letters, 24, 49, 132-134, 143,
245-246, 251

libraries, 257
library, 51, 197, 233, 256
libs, 204-205
lifo, 233, 242
linkedin, 260
linux, 5, 6, 183, 189
list, 67-72, 74-75, 77-85, 88, 93, 98,

100, 103-108, 113-114, 126, 129,
132-135, 152-153, 155-156, 165,
169, 172-174, 185, 187, 197,
198, 205-206, 233, 237, 241-245,
251, 254-255, 259

longitude, 75, 85
loops, 103, 105-106, 112-113, 174

M
median, 118-119
metadata, 209, 212, 226
method, 23, 64, 67, 69-70, 85,

90-95, 100, 103, 106-107,
124-128, 134, 143-144, 147-149,
151-160, 162, 165-167, 169,
173-174, 177, 197-198, 205,
227-229, 233-235, 238, 246-248,
251

methods, 67, 89, 143, 147, 149,
151, 153, 156, 158, 162, 166,
172-173, 233, 237

microsoft, 5, 9

279

mkdir, 187-188
module, 10, 117-121, 123, 126-127,

149, 174, 197, 206, 209-211,
226-227, 241-242, 253, 256

modules, 117-119, 121, 212, 253
modulo, 27, 61, 111, 243
multiline, 199-200
multiplication, 29, 90, 101
mutable, 70, 76-77, 85, 105-106

N
name, 10-11, 21, 24, 43, 48-49, 56,

59-60, 64, 70, 77, 80, 103-104,
117, 121, 125, 143-145, 161,
163-164, 166, 168, 175-177, 179,
186-187, 189-192, 210-212

nameerror, 59-60, 64
namespaces, 196, 199-200
new, 145
newline, 98, 127
nonetype, 20, 43
nongreedy, 203
noun, 92, 204-205
number, 204, 245

O
object, 145
objectoriented, 139, 151, 154, 162
odd, 28, 37, 40, 42, 54-56
operand, 44, 167
operands, 29, 31, 44, 167
operations, 22, 29, 44, 73, 191, 193
operator, 21, 27-32, 43-44, 71,

89-90, 167, 223, 243
operators, 26, 28-29, 32, 44, 168,

172
oranges, 142-143, 146-147
oriented, 2, 139, 141-142, 148-149,

151, 160, 162-163
orthogonal, 253, 258
orthogonality, 253, 258
override, 159, 166
overrides, 160
overriding, 159, 162
overrode, 166

P
package, 183, 209-212
palindrome, 245-246, 251
paradigm, 139, 142, 149
paradigms, 2, 139, 141
param, 64, 204, 249

280

parameter, 47-50, 52-57, 64-66,
91-95, 107, 121, 123-127, 132,
143, 157-158, 161, 167, 173,
185, 187-188, 196-199, 201,
227-229, 241, 247, 250

parameters, 48-50, 56-57, 64,
66-67, 91, 107, 117, 123, 141,
144, 147-148, 169, 172, 184,
196, 241-242

parentheses, 9, 16, 29, 48-50, 63,
73

parse, 226, 228, 230
parser, 228-229
parses, 228
parsing, 226, 228, 230
path, 123, 125, 128, 185-188,

191-193, 196, 215, 218, 259
paths, 123, 185, 259
peek, 233-236
pep, 255
perimeter, 149, 162
periods, 188
permissions, 191-193
pip, 209-212, 226-227
polymorphic, 156
polymorphism, 151, 155-156, 162
procedural, 139-142, 149
procedurally, 139, 141
processors, 9
pseudocode, 35, 44
public, 153-154
pwd, 185-187, 191
pycharm, 256
pycharmprojects, 25
pypi, 210, 212

python, 1, 5, 8-11, 14-18, 20-22,
24-26, 29, 32, 35, 40, 43, 47-49,
51-53, 56, 58-60, 62, 65, 67,
70-71, 73-74, 77, 79, 85, 87-89,
95, 97, 100, 106, 109-111, 117,
119-121, 123-126, 128-129, 132,
143-145, 149, 151, 153, 155,
158, 163-167, 169, 177, 184-185,
193, 195-197, 199, 201, 203,
205-206, 209-210, 212, 217, 224,
227, 233, 242, 244, 246-247,
255-256, 259-260

Q
queue, 237-242
quotient, 27, 28, 45

R
randint, 118, 241
recursion, 248, 250-251
recursive, 248, 251
recursively, 248
reduction, 158
regex, 206
relevant, 154
remainder, 27, 45, 243
repositories, 213, 224

281

repository, 213-224, 255
repr, 166-167, 172-173, 178
resources, 137, 184, 261, 265
response, 54, 80, 100, 176-177,

180, 228
reverses, 246
reversing, 236, 245
rmdir, 188
ruby, 1, 151

S
sanfilippo, 269
scraper, 225-226, 229-230
scrapers, 225
scraping, 230
security, 192, 229, 257-259
self, 143-148, 151-154, 157-161,

163-168, 171-172, 174-176,
178-180, 227-229, 234, 236, 238,
240

server, 5, 184, 211, 256-257
servers, 5-6, 8, 183
shell, 8-11, 13-14, 16, 20, 25, 29,

54, 77, 109, 133, 184, 193, 255
sindu, 269
slice, 98, 101, 134, 246
slicing, 98, 100, 134
smalltalk, 163
software, 1-6, 183, 209, 212-213,

223, 253-254, 256-258, 261,
263-265

stack, 3, 233-237, 242, 257, 259
stackexchange, 137, 257
stackoverflow, 137
stacks, 233
stakeholders, 256, 258
stanford, 3, 264
statements, 35, 37-42, 44, 47, 65
statistics, 118-119, 121
str, 18, 43, 52, 54, 155, 240
string, 18, 24-25, 43, 51-54, 62-63,

66-67, 78, 87-101, 103, 114, 119,
123-124, 132, 134, 154-155, 172,
196-197, 200-201, 205-206,
228-229, 236-237, 241-242, 247

substring, 95
subtraction, 29, 223
sudo, 192, 210, 226, 257
suite, 41, 44, 125, 143, 158
suites, 41-42, 143, 149
superuser, 192
svn, 213, 224, 255
syntax, 22, 24-26, 40, 44, 47-49,

56, 68, 70, 73, 77, 87, 96, 98,
103, 106, 108, 117, 124-125,
143-145, 163, 190, 218-219, 246

syntaxerror, 25, 96
syscall, 7

282

T
tag, 226, 228-230
tinyurl, 7, 11, 13-43, 45, 48-85,

87-101, 103-113, 115, 117-121,
123-129, 132-136, 139-140,
142-149, 151-169, 171, 173-175,
177, 184-191, 193, 196-207,
209-212, 215-223, 225-230,
234-236, 238-240, 242-243,
245-247, 249-250

torvalds, 1, 195, 233
tuple, 73-75, 77-78, 82, 84-85, 104,

114, 153, 165
tuples, 67, 69, 73, 76, 85, 87, 89,

153, 233
tutorialspoint, 62
twitter, 3
typeerror, 74

U
ubuntu, 5, 8, 183-184, 196, 210,

212, 226
underscore, 24, 131-132, 134, 143,

153-154, 203
underscores, 49, 134, 143-144,

203-205
unix, 5, 6, 8, 123, 183, 186-187,

189-193, 195-196, 210, 226
upwork, 260

url, 14, 215-216, 228-229
urllib, 227-229
urlopen, 227-229
urls, 216, 226-228

V
valueerror, 53, 63, 95
variable, 24, 103, 125, 143-145,

163, 190
variables, 20, 22-24, 32, 35, 44-45,

57-60, 64, 67, 117, 139-141,
144-146, 148-149, 151, 153, 156,
158, 162-164, 168-169, 172-173,
175, 177, 190, 193, 196, 228,
256, 258

virtualenvs, 212

W
waitzkin, 3
walatka, 269
web, 8, 14, 183-184, 191, 209, 211,

225-226, 229-230, 256, 259
website, 5-6, 137, 209, 211-215,

219, 224-228, 230, 256-257, 259,
261, 265

websites, 210, 225-226, 259
whileloop, 108-111, 113, 242

283

whiteboard, 261
whiteboarding, 261
whitespace, 94
whoami, 191
width, 14, 148, 151, 157-160,

164-165
withstatement, 124-127
woods, 253
wordell, 269
world, 10, 222-223
wozniak, 3
writerow, 126-127

Y
ycombinator, 265

Z
zerodivisionerror, 25-26, 61-64

